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Abstract

Closed-set speaker recognition systems abound, and the overwhelming majority of research in

speaker recognition in the past has been limited to this task. A realistically viable system must be

capable of dealing with the open-set task. This effort attacks the open-set task, identifying the best

features to use, and proposes the use of a fuzzy classifier followed by hypothesis testing as a model for

text-independent, open-set speaker recognition.

Using the TIMIT corpus and Rome Laboratory's GREENFLAG tactical communications corpus,

this thesis demonstrates that the proposed system succeeded in open-set speaker recognition. Consider-

ing the fact that extremely short utterances were used to train the system (compared to other closed-set

speaker identification work), this system attained reasonable open-set classification error rates as low

as 23% for TIMIT and 26% for GREENFLAG.

Feature analysis identified the liftered linear prediction cepstral coefficients with or without the

normalized log energy or pitch appended as a robust feature set (based on the 17 feature sets considered),

well suited for clean speech and speech degraded by tactical communications channels.

Finally, in contrast to previous efforts which have used codebooks consisting of 32-512 code-

words, codebook analysis revealed that relatively small codebooks (with as few as 8-10 codewords) are

adequate, if not optimal, in terms of classification accuracy and computational complexity for vector

quantization-based classification techniques.

xi



Text-Independent, Open-Set Speaker Recognition

L Introduction

1.1 Motivation

Speaker recognition, like other biometric personal identification techniques (e.g. finger prints,

retinal patterns, and face recognition), depends upon a person's intrinsic characteristics [15]. While

speaker recognition has been applied in a variety of applications, such as: forensic science, controlling

access to a secure facility, surveillance and intelligence gathering, conducting transactions by phone,

labeling dictation, etc., its true usefulness has yet to be exploited. For example, when a terrorist calls in

a bomb threat, wouldn't it be nice to automatically develop a ranked list of suspects? Or, when a drug

kingpin is conducting "business" on the phone, wouldn't it be nice to identify the voice to a level of

accuracy which could be used to prosecute and convict? The courts, which still rely predominantly on

experts reading spectrograms [21] [23], could benefit greatly from more current methods. In general,

as man's need to interact with machines continues to grow, so does the need for further research in

speaker recognition.

1.2 Background

During the evolutionary process, humans have developed the capability to recognize and classify

patterns. This capability, and the complexity involved, is often taken for granted since every day we

encounter and classify (correctly, more often than not) thousands of different patterns. The speech

signal conveys not only information about what was said, but also who said it, and humans, acting

as the existence proof, can effectively accomplish both speech and speaker recognition. One logical

extension is to use computers to recognize a speaker, and for decades researchers have pursued the idea

of automated speaker recognition.

A closed-set speaker recognition system is constrained to a fixed population of speakers on which

the system was trained, and various approaches have performed quite well for this task [11] [54] [56].

Considerably less work has been done for the open-set task. The open-set speaker recognition system

must contend with speakers whom it has never "heard." In this manner, the open-set system must deal



with both the closed-set speaker identification task and a form of the speaker verification task. That is,

not only must the system determine, from a population of speakers on which it was trained, the most

likely speaker of an utterance, but it must also determine whether that utterance matches the speaker

"close enough" (i.e. within an acceptable degree of tolerance). If the match is within tolerance, the

classification is accepted; otherwise, it is rejected.

Can machines perform better than humans in this task? Atal [7] cites a speaker verification

study conducted by Rosenberg in 1973, wherein a two second, all-voiced utterance was spoken by 40

speakers. Rosenberg found that human listeners achieved an accuracy of 96%, while an automated

method using pitch, formant, and intensity data achieved 98% accuracy. While these results may lead

one to believe that the problem was solved, Atal pointed out that the verification simply involved

determining whether a pair of test and reference utterances were spoken by the same or different

speakers, and he warned that such studies provide only a rough estimate of performance. The true

difficulty of the task is noted by Nolan who claimed that no current speaker identification system is

reliable and that absolute speaker recognition is not theoretically possible [40]. This inherent difficulty

may contribute to the reason why the vast majority of speaker recognition systems built to date deal

only with the closed-set task.

Since it is unrealistic for a system to be trained on all speakers, closed-set speaker recognition

systems are extremely limited in real-world application. The only viable system is, therefore, the

open-set speaker recognition system.

1.3 Problem Statement

1. Develop a text-independent, open-set speaker recognition system.

2. Identify the best features for a speaker recognition system.

1.4 Research Objectives

The best features, found by comparing 17 feature sets in terms of classification accuracy, will

be used when testing the text-independent, open-set speaker recognition system in clean and noisy

environments. Proper operation of the open-set system will entail rejecting initially mis-classified

2



utterances (e.g. out-of-set speakers' utterances) into an "Others" class. Based on the training limitation

of using extremely short utterances, an acceptable error rate1 will be 40%.

1.5 Scope and Assumptions

This effort focuses on text-independent, open-set speaker recognition as applied to the TIMIT

corpus [1] and to Rome Laboratory's GREENFLAG tactical corpus [66]. The following list details the

scope and assumptions which apply to this effort:

" Each corpora consists of speakers' utterances which were collected over a relatively short time

span (i.e. days, rather than months).

" Speakers' utterances may be corrupted by noise (tactical communications channels for the

GREENFLAG corpus).

" Channel effects and background noise are not directly removed from an utterance. That is,

rather than attempting to extract only the voiced portion of the utterance, the entire utterance

is used. If channel effects and background noise are speaker specific, they may actually be

used to advantage, assisting in speaker identification. In such a situation, the system is actually

performing a combination of speaker and channel recognition.

" One arbitrary utterance, 2-4 seconds in duration, is used to train the system on a speaker. By

comparison to many speaker recognition systems, this training is extremely short; Reynolds and

Rose, for example, used 30, 60, and 90 seconds of speech for training [55].

" The sentences used from the TIMIT corpus are the phonetically compact sx sentences. GREEN-

FLAG utterances less than 0.5 seconds (which were primarily static) were discarded.

" Small speaker populations are used. The system is pre-initialized (or trained) with 10 speakers.

Open-set classification tasks include utterances from the 10 speakers on which it was trained

plus new speakers' utterances (typically five new speakers).

" The features considered here are based on common by-frame analysis feature extraction methods

which have been successfully used in both speaker and speech recognition.

'The sponsor of this research, the U.S. Army Communications-Electronics Command (USACECOM), Fort Mon-
mouth, NJ, indicated that a system with this error rate would be serviceable. These research objectives and the list of
Scope and Assumptions (Section 1.5) partially support system requirements for USACECOM.
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1.6 Approach/Methodology

This research consists of two major goals. The first goal is to determine the optimal or best

set of features (among the group of commonly used features summarized in Figure 1) for a speaker

recognition system. The second goal, supported by the first, is to develop a text-independent, open-set

speaker recognition system. The approach is as follows:

1. To find those feature subsets which provide optimal (in terms of classification accuracy) discrimi-

nation amongst speakers, the extracted features are subjected to a closed-set speaker identification

system. A crisp nearest cluster classifier, with the codebooks formed using the Linde, Buzo, and

Gray (LBG) Algorithm [35], is used to classify the speakers' utterances. Feature optimality is

based on the minimal classification error.

2. The open-set speaker recognition system (see Figure 1) consists of an initial training phase,

followed by an operational testing phase.

" Training. Features are extracted from each frame of a speaker's training utterance, and the

feature vectors are then vector quantized to produce the speaker's codebook. These same

training feature vectors are also subjected to the fuzzy classifier, and each frame is classified

based on a maximum membership function value. A majority voting scheme of the frames

is then used to classify the utterance, and those by-frame membership function values

corresponding to the winning speaker are stored as that speaker's reference membership

function values (ref U). When this has been done for all training utterances, the system is

in its initialized state.

" Testing. When a test utterance is presented, the features are extracted, and the fuzzy

classifier determines the most likely speaker based on a by-frame majority voting scheme.

The membership function values corresponding to the winning speaker (testU) are then

statistically compared to the speaker's reference membership function values (ref U) for

the final decision of whether to accept or reject the classification.

1.7 Thesis Organization

This chapter has identified the need for more work in open-set speaker recognition and defined the

scope and goals of this research effort. Chapter II provides background information on the techniques

4
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Figure 1. Open-Set Speaker Recognition System Overview.

used to accomplish the goals, focusing on feature extraction, classification, and hypothesis testing, and

includes a literature review of significant past research in closed-set speaker recognition. Chapter III

describes the methodology and experimental procedures used in this effort. Chapter IV presents and

discusses the results obtained from the experiments. Chapter V provides a summary of the results and

the conclusions of this research. Appendix A provides additional background in support of Chapters II

and Ell. It may be helpful for the novice in speaker recognition to review this appendix first. Appendix B

provides additional experimental results. Appendix C provides the results of baseline testing (in terms

of closed-set speaker identification) to justify the use of the by-frame majority voting method for

utterance classification.
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II. Background and Literature Review

2.1 Introduction

This chapter examines background information relevant to this effort. It first provides a back-

ground of speech analysis, signal processing, pattern recognition, and statistical inference techniques

applicable to open-set speaker recognition. Feature extraction and classification (based on clustering

analysis) techniques are initially discussed. Additional details for these topics are provided in Ap-

pendix A. Next, a review of the statistical inference methods used for hypothesis testing is provided.

This chapter concludes with a brief review of some of the more pertinent work in closed-set speaker

recognition. (Overwhelmingly, the literature available specific to speaker recognition deals only with

the closed-set task.)

2.2 Feature Extraction

Feature extraction, in terms of speaker recognition, is the process of creating a compact set of

parameters characteristic of a speaker. The goal is to preserve information relevant to the speaker's

identity, while producing minimal intra-speaker variance and maximal inter-speaker variance. Many

of the techniques discussed below have been successfully applied in closed-set speaker and speech (or

word) recognition applications.

2.2.1 Linear Prediction Analysis. Linear prediction (LP) is a procedure for encoding the

speech signal by representing it in terms of time-varying parameters related to the transfer function of

the vocal tract and the characteristics of the excitation [6] [36]. The application of LP analysis derives

a set of predictor coefficients, obtained by minimizing the total squared error, E, between the actual

signal value and its predicted value [36]. The predictor coefficients (or reflection coefficients, derived

intermediately) represent the combined information about the formant frequencies, their bandwidth,

and the glottal wave [7].

2.2.2 Cepstral Analysis. In recent years, the cepstrum (particularly, the real cepstrum) has

gained widespread use in successful speech and speaker recognition systems. The cepstrum of a signal

is the Fourier transform of the logarithm of its magnitude spectrum. The uniqueness of the cepstrum

(see Figure 13, page 52) is that it provides a means to separate the speech signal's two components:

6



the slowly varying spectral envelope and the rapidly varying pitch harmonic peaks [13]. Atal [7] found

the cepstrum function, derived from linear prediction, to be a most effective feature (compared to the

predictor coefficients, the impulse response of the all-pole filter, the autocorrelation function, and the

area function) for speaker recognition, with an accuracy nearly 7% greater than the next closest feature

(the predictor coefficients).

2.2.2.1 Mel-Warped Cepstra. Linear prediction cepstrum coefficients (LPCCs), gen-

erated from the LP spectrum and distributed along a linear frequency axis, form a less than optimal

representation of an auditory signal since a logarithmic function of frequency better approximates the

perception of the human ear to frequencies [33]. The mel or Bark scale is often used to approximate

the resolution of the human auditory system [13] [46]. To obtain mel-frequency cepstral coefficients

(MFCCs), the magnitude spectrum is mel-scaled prior to taking the FFT to obtain the cepstral coeffi-

cients [22]. The mel-scaling can be accomplished either by applying a simulated mel-scaled triangular

filter bank (shown in Figure 14, page 54) or by applying a bilinear transform (given by Equation 17,

page 53, and illustrated in Figure 15, page 55). Davis and Mermelstein [12] compared MFCCs gen-

erated from the filter bank approach to the linear frequency cepstral coefficients (computed from the

log magnitude of the discrete Fourier transform) and the LPCC (computed from the linear prediction

coefficients) and found that the MFCCs performed best for word recognition.

2.2.2.2 Transitional Coefficients. Delta and acceleration coefficients, obtained via

linear regression techniques, from the cepstral coefficients provide temporal information and infor-

mation about the spectral changes from frame to frame. Fenstermacher and Smith [18] found these

coefficients to be useful for speaker identification. Furui [20] preferred the polynomial approxima-

tion, showing that a first-order polynomial characterization of spectral change is adequate. Soong

and Rosenberg [62] found that while instantaneous features carry more speaker relevant information,

the transitional features are less affected by the transmission channel. Also, the instantaneous linear

prediction coefficients and their delta coefficients are relatively uncorrelated and can be used together

in order to improve speaker recognition accuracy. Lee [33], on the other hand, found that the formant

slopes are relatively invariant across speakers.

7



2.2.2.3 Liftering. By applying a window function w(k) to the cepstral coefficients,

liftering reduces or removes undesirable components (noise), while retaining the essential characteris-

tics of the formants [26]. It essentially accounts for the sensitivity of the low-order cepstral coefficients

to the overall spectral slope and the high-order cepstral coefficients to the noise [5]. In doing so, lifter-

ing attempts to minimize the mismatch between speech collected under different environments and/or

from different communications channels. Juang et al [26] found increased recognition accuracy in

isolated digit recognition using the raised sinusoid window function of Equation 1 to lifter the cepstral

coefficients;
L irk

w(k) = 1 + - sin (1)
2 L

where k (1 < k < L) is the index of the cepstral coefficients.

2.2.2.4 RASTA. Similar to liftering, the RelAtive SpecTrA (RASTA) process is a

means of reducing the cepstral coefficients' sensitivity to noise [24] [25]. Hermansky et al [24] describe

the RASTA process as the equivalent to bandpass filtering each channel (i.e. each index of the cepstral

coefficients over all the feature vectors) through an HR filter with a transfer function given by:

H(z) = 0.1(2.1 + 1.0z - 1 - 1.0z - 1 - 2.0z - 1 ) (2)
z-1(1 - 0.98z- 1 )

The high-pass portion of the filter described by Equation 2 pacifies the effect of convolutional noise

introduced by the communications channel, while the low-pass filtering smoothes the frame-to-frame

spectral changes [24]. In addition to compensating for the time-varying channel bias, RASTA process-

ing also removes the global mean of the feature vectors [55]. Many have found improved performance

by applying the RASTA process as described in Equation 2 [27] [41] [56].

2.2.3 Fundamental Frequency. The fundamental frequency or pitch is robust in transmission

and resists distortion by telephone and similar channels [7] [40]; however it has often been disregarded

since it varies with respect to a speaker's stress, emotion, and intonation. Still, the pitch is constrained

by the physics of a speaker's larynx [13]. It is uncorrelated to the information conveyed by the

cepstrum [20] and independent of the predictor coefficients [7]; thus, it is a viable feature which

deserves consideration.
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2.3 Classification

The goal in speaker recognition is for the system to make an accurate, reliable decision of an

unknown speaker's identity. Classification, the final stage in a closed-set pattern recognition system,

is the decision-based process in which the system chooses the most probable or closest matching class,

based on a minimum distortion measure or maximum probability. The distortion measure is commonly

the distance measured between two templates or models, such as the Euclidean (which is appropriate

for cepstral coefficients [49]).

Due to the limited amount of training data used in this effort (see Section 1.5), a vector quan-

tization (VQ) based classification approach was chosen over other, more popular approaches, such as

Hidden Markov Models (HMMs). When less training data are available, Matsui and Furui [38] found

that the HMM parameters are not well estimated and that a VQ based method is less adversely affected.

2.3.1 Vector Quantization. Vector quantizers are often designed using the Generalized Lloyd

Algorithm, which is described by Linde, Buzo, and Gray [35] and commonly referred to as the LBG

Algorithm. The cluster centers (a.k.a. codewords) are found by an iterative method which terminates

in a local minimum when the average distortion (based on the distance from the cluster centers to the

data points within the clusters) stops changing significantly.

Ideally, the feature space consists of small clusters (i.e. with small variance) each formed by

repetitions of the features taken from a speaker's utterance, with the different speakers' clusters widely

separated. Using the codebooks (the set of a speaker's codewords) created by vector quantization,

the pattern classifier needs only to compare the test samples to the representative codewords, rather

than the entire training set of data for classification. Thus, classification entails finding the minimum

distortion between an unknown test speaker's utterance and the set of reference speakers' codebooks.

2.3.1.1 Codebook Initialization. A variety of codebook initialization schemes have

been investigated in hopes of providing accelerated convergence of the LBG Algorithm, achieving a

better local minimum, and providing flexibility (in terms of the number of cluster centers). Linde et

al [35] suggest a splitting method, whereby the LBG Algorithm is applied at each power of two (giving

codebook sizes of 1, 2, 4, 8, 16... ). Katsavounidis et al [28] proposed a maxi-min method, while
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recently, DeSimio et al [14] proposed a Karhunen-Lo~ve initialization scheme, whereby the cluster

centers are placed along the principal component axes of the training data's covariance matrix.

2.3.1.2 Codebook Size. Codebook sizes often seem to be an arbitrarily chosen number

of codewords. Ramachandran et al [51], for example, simply used a codebook size of 32 codewords,

while Assaleh and Mammone [5] based their codebook size on the number of phonemes and used 46

codewords. Matsui and Furui [38] analyzed codebook sizes of 32, 64, 128, 256, and 512, but found

little improvement in speaker identification rate above 64 codewords.

Increasing the number of codewords, N, significantly increases the computational complexity,

not only for building codebooks, but also for classification of utterances. To build a codebook, for

example, for M training vectors (or frames of speech), each iteration requires M distance calculations,

resulting in a complexity of O(MN) for one Lloyd iteration [28]. Table 1 illustrates the computational

complexity involved in building codebooks then classifying speakers' utterances (closed-set speaker

identification) for different values of N. The complexity is measured by the number of floating point

operations (flops) required. Ten GREENFLAG speakers were chosen for this example and the proposed

speaker recognition system1 was used to first build the speakers' codebooks using one utterance per

speaker, then classify the remaining 46 utterances. As shown, the number of flops required for

both building the codebooks and for classifying the utterances increases dramatically as N increases.

Moreover, an improvement in the classification error rate for N = 8 does not occur until N = 128,

clearly indicating that the cost of increased computational complexity for improved accuracy may not

be worthwhile. In light of these results, prudence suggests a conservative approach, in which fewer

codewords may in fact be preferable, when choosing the codebook size.

2.3.2 Fuzzy Logic Techniques. Similar to the LBG algorithm, the fuzzy c-means algorithm

incorporates the calculation of the degree of class membership for an evaluated input data vector [9].

The membership function value is defined by [9] [29]:

1
Uik= 2 (3)E I ( X _-Vj)TA(x -vj) - I

EjC=1 ((xk-vz) ) xh n-i

'The proposed speaker recognition system will be described in detail in Section 3.5, and a full understanding of it is
irrelevant to the present discussion. The focus here is to illustrate the computational complexity with respect to different
codebook sizes.
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Table 1. Computational Complexity, in terms of floating point operations (flops), involved in Building
Codebooks and Classifying speakers' utterances. Ten GREENFLAG speakers were applied
to the system described in Section 3.5, operating in a closed-set mode, to generate these
results. One utterance per speaker was used to build his codebook, and 46 test utterances
were classified. As shown, computational complexity increases by orders of magnitude for
increasing N, and it is not until N = 128 that the error is corrected.

# of Codewords Build Codebooks Classify
N (Megaflops) (Megaflops) Pr(Error)
8 16.6 412 0.02
16 34.9 1,486 0.07
32 58.7 5,652 0.02
64 116.7 22,057 0.02
128 198.4 87,154 0.00

where 0 < Uik < 1 for all i, k. For c classes, x represents the data (or feature vector) and is indexed

by k, v is a vector of the cluster centers and the cluster centers for each class are indexed by i, A is the

identity matrix for Euclidean distance, and m represents the degree of fuzziness (m > 1, increasing

m increases the fuzziness).

Equation 3 can be used either for designing a fuzzy codebook or for classification based on the

maximum membership function value (minimal distance = maximal membership). For fuzzy logic

classification, the decision is based on the maximum membership function value. For a small (three

speaker), Telugu (a Dravidian language spoken in southern India) corpus, Pal and Majumder [44]

achieved a 97% speaker identification accuracy using a fuzzy set classification technique.

2.3.3 Feature Vector Size. Simply concatenating features results in extremely large numbers

of free parameters within the classifier. With regard to classification, it is desirable to limit the number

of elements in a feature vector since a large number of free parameters in the classifier may cause the

classifier to "memorize" the training data, resulting in degraded performance with previously unseen

test data [17] [60]. Multiple codebooks of relatively small dimensional feature vectors can serve

as an alternative to a single codebook of concatenated feature vectors. Classification using multiple

codebooks can be achieved by either a simple voting method (in which each individual classification

result is equally weighted) or a weighted voting method [56] [62].
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Table 2. Decision Table for Hypothesis Testing

DECISION
STATE Accept H0  Reject H0

H0 is TRUE Correct Decision False Reject
(Type I Error)

H0 is FALSE False Accept Correct Decision
(Type H Error)

2.4 Hypothesis Testing

The open-set task requires a means of determining whether the results of classification are "close

enough." Hypothesis testing is one method to accomplish this task. Hypothesis testing, as referred to

in this work, is a form of statistical inference which involves comparing two unknown populations,

with two complementary outcomes: the null hypothesis H and the alternative hypothesis H1 [31].

A determination must be made whether to accept or reject the null hypothesis. The testing procedure

involves observing a computed test statistic, which is a random variable, and deciding which hypothesis

to accept [16]. Two types of errors may occur, with probabilities defined in Equations 4 and 5 and

explained in Table 2.

a = Pr(Reject Ho I Ho True) (4)

0= Pr(Accept H0 Ho False) (5)

The challenge in hypothesis testing is in finding an acceptable balance between the two types of

error. Finding this balance begins by varying a over a range of values. For each value of a, the critical

statistic x, is computed via optimization techniques, which numerically integrate the distribution (see,

for example, Figure 2) at different values of x until the result equals a. Figure 2(a) shows the F-

distribution, used for analysis of variance (ANOVA), with four degrees of freedom in the numerator

(DoFl) and eight degrees of freedom in the denominator (DoF2). Alpha (a) is the shaded area under

the tail of the curve. For values of x < x, the null hypothesis is accepted, while for values of x > x"

the null hypothesis is rejected. Figure 2(b) shows that when DoF1 = 1, the F-distribution is not

bounded and numerical integration cannot be accurately accomplished.
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F Probability Density (DoFI =1, DoF2=5)
F Probability Density (DoF1=4, DoF2=8) 1
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Figure 2. The F-Distribution, (a) shows a and the regions where H0 is accepted and rejected; (b)
shows the F-distribution when DoF1 = 1.

2.4.1 The Smirnov Two-Sample Test. In non-parametric (or distribution-free) tests, the

underlying population variables are not assumed to be normally distributed, as in parametric tests such

as the ANOVA and the Chi-Square Goodness of Fit Tests. Free of such assumptions, non-parametric

tests can be more robust and are often fast and efficient to implement [16].

The Smimov Test for Common Distributions is similar to the Kolmogorov-Smimov Test, which

tests whether a set of observations is from a normal population [34] [45], except that it is a non-

parametric test. The null hypothesis for the Smirnov Test is that the two populations have the same

distribution. By comparing the sample cumulative distribution functions, the test statistic, S, is found

as the difference of greatest magnitude between the two cumulative sample distributions [63]:

S = sup IFi(x) - F2(x)I. (6)

By using the absolute value in defining S, the test is two-sided. The equation for the value of the

critical test statistic, So, is given by [68]:

S = A,1 (7)N1 N 2
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where A, satisfies
00

(-l)ie2i2A 1 - a (8)
i=-00

and N1 and N 2 are the sizes of the two populations, with N1, N2 - o0 so that - - p > 0. Also,Ni

Equation 7 does not require that N = N2.

In sum, the Smimov Test considers the shapes of the distribution, not just their means and

variances [37]. Large values of S are evidence against the null hypothesis, and the null hypothesis is

rejected when S > Sa.

2.5 Closed-Set Speaker Recognition

This section briefly reviews some of the more significant, related work reported in closed-set

speaker recognition. It is included because the closed-set task, while simpler, is inherently related to

the open-set task. Basztura [8] is one of the few who has confronted the open-set task using error

and risk probability analysis connected with Bayesian decision criterion for selecting a discrimination

threshold and approximating the conditional distributions of unknown voices. He obtained overall

classification error rates of approximately 5% and 15% for text-dependent experiments conducted on

small and large populations (10 closed set and 10 out-of-set speakers, and a hold-out method for 100

speakers, respectively).

Reynolds [53] used mel-frequency cepstral coefficients (mel-scaled via triangular filter bank)

and a Gaussian Mixture Model (GMM) classifier for large population (all 630 TIMIT speakers) text-

independent, closed-set speaker identification, obtaining 99.5% accuracy.

Ricart et al [56] applied a speaker recognition system to Rome Laboratory's tactical GREEN-

FLAG database. This speaker identification system used on-line training and incorporated both feature

set fusion and classifier fusion. The feature sets consisted of 1 4th order liftered LP cepstra, RASTA

liftered cepstra, delta cepstra, and acceleration cepstra. The fused classifier techniques were LBG vec-

tor quantization, multi-layer perceptron, and k-nearest neighbor. Ricart et al concluded that combining

the results of the different feature sets and classifiers produced significant increases in performance,

with the best results (93% accuracy) obtained from a feature combination of the liftered cepstra and

delta cepstra.
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2.6 Conclusion

This chapter provided background information and explored much of the current literature in

speaker recognition. The fact that most speaker identification literature deals only with the closed-set

task supports the need for further work in open-set speaker recognition. The next chapter describes the

methodology used in this effort to find the best set of features and to attack the open-set problem.
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III. Methodology

3.1 Introduction

This effort focuses on text-independent, open-set speaker recognition as applied to the TIMIT cor-

pus and to Rome Laboratory's GREENFLAG tactical corpus. Speakers' utterances are text-independent

(i.e. not constrained by the text spoken) and may be corrupted by noise (tactical communications chan-

nels for the GREENFLAG corpus). The goals in this effort are to identify the best feature set and to

develop a text-independent, open-set speaker recognition system. This effort proposes fuzzy classifi-

cation followed by hypothesis testing for open-set speaker recognition.

This chapter is organized as follows: Speech processing techniques generic to all work conducted

are first defined. Again, Appendix A contains additional information. Next, the methodology followed

to find the best set of features and the optimal codebook size for a speaker identification system is

described. Finally, the approach used to develop the open-set speaker recognition system is described.

3.2 Speech Processing

3.2.1 Pre-Processing. Pre-processing entails those measures taken to prepare the speech

signal for analysis. A pre-emphasis filter, P(z) = 1 - 0.97z - 1, is applied to the digitized utterance to

increase the relative energy of the high frequency spectrum. Then, a 20 ms Hamming window, whose

spectral sidelobes are attenuated by 30 dB, is applied every 10 ms. The overlapping frames overcome

the shortfalls from window edges.

3.2.2 Feature Extraction. In terms of speaker recognition, feature extraction is the process

of creating a compact set of parameters characteristic of a speaker. The goal is to preserve information

relevant to speaker's identity, with minimal intra-speaker variance and maximal inter-speaker variance.

The basic feature vectors consist of: 12 th order linear prediction cepstral coefficients (LPCEP-

STRA), 1 2
t h order mel-frequency cepstral coefficients (MFCC), and 1 2 th order reflection coefficients

(LPREFC). The LP model order is 24, and the triangular filter bank approach is used for obtaining the

MFCC. Liftering (see Equation 1) is applied to the LPCEPSTRA and MFCC features, with L = 22.

Pitch (FO) is extracted and examined separately; however, it or the normalized log energy (E) may

be appended to the basic features. Delta (D) and acceleration (A) coefficients are obtained from the
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basic feature vectors via linear regression techniques. The RASTA features are obtained from the

LPCEPSTRA by applying the filter given in Equation 2 to each channel.

Table 3 summarizes the features examined in this effort. The appended feature sets are those

wherein either the normalized log energy or pitch are appended to the basic features. For example,

LPCEPSTRAE consists of the 12 LPCEPSTRA features, appended with the normalized log energy

(giving 13 elements in each feature vector). The derived feature sets consist of the 12 delta or accel-

eration coefficients for each basic feature and the 12 RASTA features derived from the LPCEPSTRA.

Pitch is in the Basic Feature column since it was extracted separately.

Table 3. Summary of the 17 Features.

Basic Features Appended Feature Sets Derived Feature Sets
LPCEPSTRA LPCEPSTRAE LPCEPSTRAD

LPCEPSTRAFO LPCEPSTRAA
RASTA

LPREFC LPREFCE LPREFCD
LPREFCFO LPREFCA

MFCC MFCCE MFCCD
MFCCFO MFCCA

FO

3.2.3 Classification. The goal in speaker recognition is to make an accurate, reliable decision

of an unknown speaker's identity. In general, classification of a test pattern is based on a minimum

distortion measure, or as in the case of a fuzzy classifier, a maximum membership function value.

Throughout this work, the Euclidean distance is used to calculate distortions. The open-set task further

requires that following the classification, the system must determine whether to accept or reject the

classification.
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3.3 Feature Analysis

An exhaustive search of all possible features is impractical; therefore, only those features shown

in Table 3 were considered in searching for the best features. The goal was to find those feature sets

which provide optimal discrimination amongst speakers, with optimality defined in terms of minimal

classification error rates. LNKnet was used to accomplish this closed-set speaker identification task.

The k-means algorithm was used for finding the cluster centers to initialize the nearest cluster classifier.

Classification entailed finding the minimum distortion (on a frame-by-frame basis) between an unknown

test utterance and the set of reference speakers' codebooks. The best features were those which provided

minimal classification error.

3.4 Codebook Analysis

In addition to finding the best features, the analysis described above also lended itself to the

determination of the optimal codebook size. Three factors were considered in this clustering analysis:

classification error rate, computational complexity, and cluster distortion. The most important factor for

this application was classification error rate. The number of codewords at which the classification error

stops decreasing and may begin to diverge (i.e. when the classifier is "memorizing" the training data)

indicates the largest acceptable codebook size. To limit the computational complexity involved, the

least number of codewords which provided an acceptable (yet stable) classification error was optimal.

In terms of cluster distortion, the number of codewords at which the change in the cluster distortion

becomes insignificant, indicates an optimal number of codewords.

3.5 The Open-Set Task

Recalling the brief overview in Section 1.6, the open-set speaker recognition system (see Figure 1)

is initialized during training. This training entails creating the reference speakers' codebooks and

obtaining the reference membership function values used for hypothesis testing. Once training is

completed, the system is ready for normal operation.

3.5.1 Building The Codebooks. For the open-set task, clusters of the training samples

(the speaker's codebook) are formed using the Karhunen-Lo~ve initialization [14], followed by the

LBG Algorithm [35]. The Karhunen-Lo~ve initialization was chosen to initialize the codebooks
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because it disperses the desired number of codewords along the principal component axes of the data's

covariance matrix, allowing simple, efficient implementation of any number of codewords. Figure 3

provides a two-dimensional example of building codebooks for four classes of synthetically generated

data. Figure 3(a) shows how the Karhunen-Lo~ve initialization disperses the codewords (symbolized as

"x,o,*,+") amongst the data along the principal component axes. Figure 3(b) shows the final codebooks

after applying the LBG Algorithm. The pattern classifier needs only to compare (on a frame-by-frame

basis) the test utterance's features to the representative codewords.

Initial Clusters (4 classes, 9 codewords per class) Results of LBG Algorithm (4 classes, 9 codewords per class)
2.6 , 2.6

.. '6'. 2, .. 6. 6. C

00

.0

• ..

x x

(a) (b)

Figure 3. Creating codebooks for four classes of two-dimensional synthetically generated data, using
(a) the Karhunen-Lo~ve initialization, followed by the LBG Algorithm resulting in (b).
(The codewords representing the four classes are shown as xo*."

3.5.2 Fuzzy Classification. Fuzzy classification, which is used for the open-set task,

considers the degree of class membership for each test frame. The results of baseline testing (see

Appendix C) substantiate the use of the by-frame majority voting scheme described below.

The class membership function value (U), computed with Equation 3, provides a measure of

similarity by which a soft decision can be made with a degree of confidence. Throughout this work, the

degree of fuzziness (in) is m = 2 [29]. Each frame is classified, based on the maximum membership

function value. Table 4(a) shows the by-frame results of closed-set speaker identification of 10

GREENFLAG speakers, one test utterance per speaker, using a fuzzy classifier (with eight codewords)

and the LPREFC feature set.
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Table 4. (a) By-Frame Confusion Matrix for Closed-Set Speaker Identification for 10 GREENFLAG

speakers using a Fuzzy Classifier and the LPREFC feature set. (b) By-Utterance Confusion
Matrix obtained from (a). The by-utterance classification error (0.10) is now more clearly
observable.

ACTUAL COMPUTED ACTUAL COMPUTED
SPEAKER SPEAKER SPEAKER SPEAKER

- 0 1 2 3 4 5 6 7 8 9 - 0 1 2 3 4 5 6 7 8 9
0 48 3 1 9 2 4 . 2 7 .0 1
1 7 196 10 is 1 2 10 27 26 4 1
2 4 19 239 52 77 91 89 136 92 39 2 1
3 2 21 3 32 11 11 3 7 14 2 3 1
4 4 4 2 41 81 15 23 18 21 10 4 1
5 6 8 142 60 62 261 66 12 38 38 5 1.. . . .
6 2 9 38 5 12 44 39 32 5 4 6 1
7 4 4 9 9 1 3 74 11 3 7
8 12 23 25 42 16 37 38 44 106 6 8
9 6 2 19 37 44 27 8 28 65 176 9

(a) (b)

Each utterance is classified as belonging to the speaker to whom the majority of the frames

are classified, and the membership function values associated with those winning frames are used

in hypothesis testing. For example, Table 4(a) shows that the majority of Speakerl's frames (196)

were classified as belonging to Speaker,. The membership function values associated with those

196 frames are then used for hypothesis testing (the others are discarded) to determine whether that

utterance classification should be accepted.

When classifying multiple utterances per speaker, it is more common to display the by-utterance

classification results (which will be used henceforth). Table 4(b) shows the by-utterance results obtained

by summarizing the results of Table 4(a). For this example, the by-frame classification error is 0.62,

and the by-utterance classification error, obtained by the majority voting scheme of the by-frame

classifications, is 0.10.

3.5.3 Hypothesis Testing. The Smimov Test for Common Distributions establishes whether

or not two populations of sample data have the same distribution. In this case, the two populations are

the reference and test membership function values (ref U and testU, respectively). Thus, the null

hypothesis is that ref U and testU have the same distribution.

Prior to implementing the Smimov Test, the sample populations (ref U and testU) are pre-

processed with a histogram "optimization" technique. This histogram optimization ensures that each

'Recall that the reference membership function values are obtained by classifying the training utterances.
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Table 5. Histogram Optimization. Prior to implementing the Smimov Test, the ref U and testU
sample populations are pre-processed as illustrated in this simple example to remove outlier
bin locations. The population is initially distributed in bin locations bi with frequency fi.
Bins are combined (as indicated by the "}") to ensure fi > 5, resulting in a new distribution
given by bi and fi.

BEFORE AFTER
A A

bi fi bi f.i}
0.1 11
0.2
0.3 4 0.3 5
0.4 6 0.4 6
0.5 12 0.5 12
0.6 15 0.6 15
0.7 8 0.7 8
0.8 10 0.8 100.9 2"1-  0.9 5

1.0 0

bin location contains at least five entries; thereby removing "outliers" by effectively smoothing the

histogram and eliminating the need for arbitrarily choosing a threshold value for the membership

function values. The process is basically identical to the pre-processing techniques described by

Lapin [31] for the Chi-Square Goodness of Fit Test. Afifi and Azen [4] recommend at least five entries

per bin location. If, for example, a population is initially distributed in bin locations bi with frequency

fi as shown in Table 5, the histogram optimization will combine the outliers to ensure the frequency

in each bin is at least five, resulting in bi and fi. The optimized histogram bin locations are then

the values to which the Smimov Test is applied. The sample cumulative distribution functions of the

pre-processed ref U and testU are compared, using Equation 6 to obtain S.

Based on the value for the Smirnov significance level, a, S, is computed using Equation 7

and compared to the calculated value of S. Figure 4 illustrates the Smirnov Test values of S and

S, for an arbitrarily chosen speaker's utterance. If S < Sc, the classification is accepted, while if

S > Sc, the classification is rejected. Ideally, when the classifier correctly classifies an utterance,

the null hypothesis is always accepted (i.e. S < S, over the range of a). On the other hand, all

out-of-class speakers' utterances should be rejected into an "Others" class. Thus, in addition to the
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two types of error (false acceptance and false rejection), it is possible to have a correct rejection. This

occurs when the classifier mis-classifies the utterance, but the hypothesis testing correctly rejects the

classification. Since the classifier must determine the most likely speaker, it will classify (correctly or

incorrectly) each utterance; thus, the hypothesis test's capability to correctly reject the classification is

of vital importance to accomplishing the open-set task.

Smirnov Test for Common Distributions

0.8

0.7

0.6

0.5

0.4

0.3

0.2
- -S

0 - = Salpha0.1
Accept if S < Salpha

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
alpha

Figure 4. The Smirnov Test values S and So, for an arbitrary speaker's utterance. While the calculated
value of S remains constant, S, varies. When S < S , the classification is accepted;
otherwise, it is rejected.

3.5.4 Performance Measure. After hypothesis testing, overall performance of the system is

described by the final classification error rate, Pr(Error), for a given value of a. Often Pr(Error) is

defined only as a function of the probability of false acceptances and the probability of false rejections.

Note, however, that such an approach does not take into account the rate of correct rejections. To do so

here, the accuracy, Pr(Correct), is found by summing all correct classifications (i.e. summing along

the confusion matrix diagonal for the closed-set utterances and summing the "Others" class for the

out-of-set utterances) and dividing by the number of utterances tested. Thus, the final classification

error rate is given by:

Pr(Error) = 1 - Pr(Correct). (9)
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3.6 Conclusion

This chapter described the methodology used to find the best features and accomplish the open-

set task. A description of the pre-processing, feature extraction, and classification techniques necessary

to accomplish each requirement was provided. The next chapter provides the results of the analysis

performed.
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IV Results

4.1 Introduction

This chapter presents the experimental results of the methodology described in Chapter Ell. The

results of the search for the best features and the optimal codebook size for the TIMIT and GREENFLAG

corpora are first provided. The proposed text-independent, open-set speaker recognition system is then

tested using those features found to be best suited for the task.

4.2 Feature Analysis

As discussed in Section 3.3, the best features would be those that provided minimal classification

error. The experiments to find the best features used LNKnet's nearest cluster classifier on the

feature sets shown in Table 3. Ten TIMIT speakers from Dialect Region 8 and 10 arbitrarily chosen

GREENFLAG speakers were used, resulting in 40 and 53 test utterances from each respective corpus.

The number of codewords ranged from 1-50 for this analysis.

The results of this feature analysis are summarized in Table 6 and Figure 5. Table 6 shows a ranked

order list (ranked according to averaged classification error over the range of 1-50 codewords) for all

the features, and Figure 5 further illustrates the averaged classification error and standard deviation

for each feature, with the ordinate labeled according to the ranking in Table 6. Thus, based on the

minimum averaged closed-set speaker identification error rate, the best features for the TIMIT corpus

are the LPCEPSTRAE, while for the GREENFLAG corpus, the best features are the LPREFCE. For

plotted results showing the classification error versus the number of codewords for all features (from

which the mean and standard deviation were calculated), see Appendix B.

4.2.1 Observations.

e As shown in Figure 5, there is very little difference in classification performance for the top

three features for TIMIT and the top five features for GREENFLAG. In fact, the difference is

not statistically significant, based on ANOVA tests at a significance level of 0.05, with the null

hypothesis defined as the means being equal. The details of these ANOVA tests are shown in

Table 7.
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Table 6. Results of Feature Analysis. Ranking the features according to the mean error rate (over the
range of 1-50 codewords). As shown, LPCEPSTRAE are best for TIMIT, and LPREFCE
are best for GREENFLAG. In general, LPCEPSTRA, appended or not, perform well.

TIMIT GREENFLAG
Pr(Error) Pr(Error)

Rank Feature Mean I sd Feature Mean sd
1 LPCEPSTRAE 0.050 0.082 LPREFCE 0.051 0.023
2 LPCEPSTRAFO 0.050 0.064 LPCEPSTRAE 0.056 0.033
3 LPCEPSTRA 0.080 0.099 LPCEPSTRAFO 0.059 0.034
4 MFCCFO 0.116 0.069 LPCEPSTRA 0.061 0.033
5 LPREFCE 0.121 0.090 LPREFC 0.065 0.029
6 MFCC.E 0.125 0.086 LPREFCFO 0.073 0.022
7 MFCC 0.126 0.091 MFCC 0.076 0.036
8 LPREFCFO 0.130 0.083 MFCCE 0.077 0.035
9 RASTA 0.156 0.125 MFCCFO 0.096 0.037
10 LPREFC 0.182 0.082 RASTA 0.132 0.121
11 LPCEPSTRA.D 0.364 0.171 LPREFCD 0.359 0.119
12 LPREFCA 0.422 0.167 LPREFCA 0.431 0.127
13 LPREFCD 0.479 0.135 MFCCD 0.462 0.121
14 LPCEPSTRAA 0.507 0.136 MFCCA 0.507 0.126
15 MFCC.D 0.509 0.139 LPCEPSTRAD 0.510 0.121
16 MFCC.A 0.562 0.110 LPCEPSTRAA 0.582 0.107
17 FO 0.668 0.038 FO 0.628 0.043

* While not the best feature set for both corpora, the LPCEPSTRA features (with or without

normalized log energy or pitch appended) performed well, indicating that they are a robust set

of features.

" The RASTA features always performed better than the transitional features, but not quite as well

as the static features.

* The transitional features did not perform as well as the static features from which they were

derived. This supports Soong and Rosenberg's findings [62]. In related experiments, the

addition by concatenation of the delta and acceleration coefficients gave equal (for MFCCE and

LPCEPSTRAE) or worse results (for LPREFCE), suggesting that decision fusion techniques

are the best means of capitalizing on the temporal information.

" Pitch, as an independent feature, performed poorly.
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* Appending the normalized log energy, and sometimes the pitch, can improve the performance

of the basic features.

e The fact that many of the feature sets performed well for GREENFLAG utterances may indicate

that in addition to speaker recognition, platform recognition (i.e. recognition based on the noise

characteristics of the platform and the channel) was also taking place.

Table 7. ANOVA Test Results for Best Features. The difference in performance of the top three
TIMIT features (LPCEPSTRAE, LPCEPSTRAFO, and LPCEPSTRA) and the top five
GREENFLAG features (LPREFCE, LPCEPSTRAE, LPCEPSTRAF0, LPCEPSTRA,
and LPREFC) is not statistically significant at a significance level of 0.05.

Corpus DoF DoF2 F F0.05  H0
TIMIT 2 147 1.30 3.07 ACCEPT

GREENFLAG 4 245 1.41 2.42 ACCEPT

Considering the results of the ANOVA testing described above and observing the stability of

the error rates plotted versus the number of codewords shown in Figure 20, page 69, and Figure 21,

page 70, the feature sets most used in the remaining experiments were the LPCEPSTRAE for TIMIT

and the LPREFC for GREENFLAG.
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Average Classification Error (10 TIMIT Speakers, 40 Test Utterances)
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Figure 5. Results of Feature Analysis. These plots show the average classification error for the
17 feature sets considered for (top) TMIT and (bottom) GREENFLAG. The features
are placed along the ordinate according to the ranking in Table 6. As shown, the best
TIMIT feature set is the LPCEPSTRAE, while for GREENFLAG, the best feature set is
LPREFC.E. Note the clear separation in performance between the static and the transitional
feature sets.
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4.3 Codebook Analysis

As described in Section 3.4, the codebook analysis to find the optimal codebook size was based

on minimal classification error, minimal computational complexity, and an insignificant change in

cluster distortion. Again, LNKnet's nearest cluster classifier was used for this closed-set task. Cluster

distortions were taken from the results of LNKnet's k-means vector quantization. The number of

codewords ranged from 1-50 for this analysis.

4.3.1 TIMIT. Figure 6 shows the experimental results for finding the optimal codebook

size for the TIMIT corpus using the LPCEPSTRAE feature set. Ten speakers chosen from Dialect

Region 8, four test utterances each, were used. Based solely on minimal classification error, the optimal

codebook size should be in the range from 19-27 codewords. Considering computational complexity,

however, a more acceptable range is 9-16 codewords.
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Classification Error (10 TIMIT Speakers, 40 Utterances)
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Figure 6. Results of Codebook Analysis for TIMIT. Using LPCEPSTRAE features extracted from
10 TIMIT speakers (40 test utterances), the classification error (top) shows that an optimal
number of codewords, based solely on classification, is in the range of 19-27 codewords.
In contrast, considering cluster distortion (bottom) alone may lead one to choose a rather
large codebook size. Even though the cluster distortion drops significantly for the first
few codewords and gradually less thereafter, its change does not become insignificant until
approximately 35 codewords.

29



4.3.2 GREENFLAG. Figure 7 shows the experimental results for finding the optimal

codebook size for the GREENFLAG corpus using the LPREFC feature set. Ten arbitrarily chosen

GREENFLAG speakers, with a total of 53 test utterances, were used. Based on minimal classification

error, the optimal codebook size should range from 6-10 codewords. This range is also acceptable in

terms of computational complexity.

Figure 8 shows the results of additional codebook analysis using the LPREFCE features ex-

tracted from all 41 GREENFLAG speakers (one test utterance per speaker). Here, both training and

test utterances were classified. Classification of the training utterances immediately converges to zero

errors. Classification of test utterances, however, is the primary concern. Again, small codebooks

(with approximately 6-8 clusters) are adequate, if not optimal. Similar results were obtained using

LPCEPSTRAE and MFCCE.
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Classification Error (10 GREENFLAG Speakers, 53 Utterances)
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Figure 7. Results of Codebook Analysis for GREENFLAG. Using LPREFC features extracted from
10 GREENFLAG speakers (53 test utterances), the classification error (top) shows that
an optimal number of codewords, based solely on classification, is in the range of 6-10
codewords. In contrast, considering cluster distortion (bottom) alone may lead one to

choose a rather large codebook size. Even though the cluster distortion drops significantly
for the first few codewords and gradually less thereafter, its change does not become
insignificant until approximately 45 codewords.
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Classification Error (41 Speakers, min Test Error = 0.1951 at 6 clusters)
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Figure 8. Results of Codebook Analysis (all GREENFLAG speakers). Using LPREFCE features
extracted from the 41 GREENFLAG speakers (one test utterance per speaker), the classi-
fication error (top) shows that an optimal number of codewords is six. Again, the cluster
distortion (bottom) signifies the use of larger codebooks.
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4.3.3 Observations.

" Relatively small codebooks are adequate to achieve reasonable, if not optimal, speaker identifi-

cation results.

" Increasing the number of codewords can provide slight improvements in classification accuracy;

however, since the tradeoff for this minimal additional accuracy is computational complexity,

codebook sizes of approximately 8-10 codewords were determined to be optimal.

" In contrast to classification accuracy, cluster distortion results considered alone signify that

a large number of codewords may be optimal (as many as 35-45, or depending on how an

insignificant change in cluster distortion is defined). However, cluster distortion always drops

significantly in the first few codewords. Based on these two observations, a requirement to

add codewords until the change in cluster distortion becomes insignificant may actually create

codebooks that fit the training data too closely, resulting in a classifier that has "memorized"

the training data or lost its ability to generalize for test data. This would explain the divergent

trend, seen here, in classification error as the number of codewords increases past the optimal

range for classification accuracy. It further indicates that the initial decrease in cluster distortion

is all that is required for a significant decrease in classification error. Compared to the factors of

classification error and computational complexity, the cluster distortion design criteria had little

impact on this cluster analysis.

* It is possible that the cluster analysis results found in this research were influenced by the

limitation of using one short training utterance per speaker. Systems which are free to use more

training data may find that more codewords produce better speaker identification results.
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4.4 The Open-Set Task

Drawing on the closed-set speaker identification results of the feature and codebook analyses,

the proposed text-independent open-set speaker recognition system (a fuzzy classifier followed by

hypothesis testing) was tested on the two corpora. It is important to recall from Section 1.5 that the

amount of training data used in this effort (one 2-4 second utterance for each speaker's codebook) is

far less than that used in most text-independent, closed-set speaker recognition systems; hence, directly

comparing the results obtained here to such systems would lead to biased conclusions.

4.4.1 TIMIT. This section provides and discusses the results of open-set speaker recognition

for the TIMIT corpus. Each dialect region was treated separately, training on one utterance from 10

speakers, and testing on 15 speakers. The reason for testing within dialect regions was because it

proved to be more difficult (and realistic) than testing across dialect regions. From the trained speakers,

four utterances were used, while five utterances were used for the out-of-class speakers for a total of

65 test utterances. Speaker codebooks, consisting of 10 codewords, and the LPCEPSTRA_E features

were used, while the Smimov significance level, a, ranged from 0.01 < a < 0.09.

The results of this test for Dialect Region 8 are shown in Figure 9. (Results for the other

dialect regions are similar and can be found in Appendix B.) The lengths of the training utterances

used range from 1.8-3.6 seconds, with a mean of 2.7 seconds. The top plot shows the final clas-

sification error rate (calculated using Equation 9). In terms of classification accuracy, an optimal

value of a is 0.02 < a < 0.03. The bottom plot in Figure 9 shows the Pr(FalseAcceptance),

the Pr(FalseRejection), and the Pr(CorrectRejection). The equal error rate occurs at approxi-

mately a = 0.06, where Pr(FalseAcceptance) = 0.12 and Pr(FalseRejection) = 0.14 (actual

values). The Pr(CorrectRejection) indicates the rate at which the Smimov Test correctly rejects

mis-classifications.

Table 8 shows the confusion matrix for Dialect Region 8, obtained at a = 0.06. The correct

rejections at this value of a occurred at a rate of Pr(CorrectRejection) = 0.29, and the final

classification error rate is Pr(Error) = 0.26.

To gain a better appreciation for the results obtained from the individual TIMIT dialect regions,

the results from all dialect regions were averaged to produce Figure 10. The top plot shows the

averaged final classification error rate, indicating that optimal classification, Pr(Error) z 0.31,
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Open Set Classification Error (10 Train, 15 Test Speakers, 65 utterances)
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Figure 9. Results of Open-Set Speaker Recognition for TIMIT, Dialect Region 8, using LPCEP-
STRAE and 10 codewords per speaker. For minimal classification error, 0.02 < a < 0.03
is optimal, while for an equal error rate, an optimal value is a ' 0.06.

occurs at a = 0.02. The bottom plot shows that the equal error rate occurs at a Z 0.04, resulting in

Pr(Error) ,,z 0.35.
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Table 8. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 8, using LPCEPSTRAE
and 10 codewords per speaker. This confusion matrix is for c = 0.06, which is approxi-
mately where the equal error rate occurs, resulting in Pr(CorrectRejection) = 0.29 and
Pr(Error) = 0.26. The dotted line indicates the division between reference speakers and
out-of-set speakers. Notice that most of the out-of-set speakers' utterances are correctly
rejected into the "Others" class.

ACTUAL COMPUTED
SPEAKER SPEAKER

- 0 1 2 3 4 5 6 7 8 9 Others
0 4
1 4
2 .4
3 1 . 2. ......
4 1 . 3
5 ..... 3 ... 1
6 ...... 3 ... 1
7 ....... 1.. 3
8 . . . . . . . . 4 .

9 ......... 1 3

10 . ..1 4
11 3 1. . ..... 1
12.. ........ 5
13.. ........ 5
14...... 1 4
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Figure 10. Results of Open-Set Speaker Recognition for all TIMIT speakers used. This figure shows
the averaged results obtained from all eight dialect regions (using 65 test utterances per
dialect region). For minimal classification error, a = 0.02 is optimal, while for an equal
error rate, an optimal value is a - 0.04.
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4.4.2 GREENFLAG. This section provides and discusses the results of open-set speaker

recognition for arbitrarily chosen speakers from the GREENFLAG corpus, training on one utterance

from each of 10 speakers, and testing on 15 speakers for a total of 73 test utterances. (Results of

additional tests with the GREENFLAG corpus, using different groups of 10 speakers for training and

25 for testing, are available in Appendix B.) The lengths of the training utterances used range from

2.0-3.9 seconds, with a mean of 2.8 seconds. Speaker codebooks, consisting of eight codewords per

speaker, and the LPREFC features were used, while a ranged from 0.05 < a < 0.19.

The results of this test are shown in Figure 11. The top plot shows the final classification

error rate. In terms of classification accuracy, a = 0.09 is optimal. The bottom plot in Figure 11

shows the Pr(FalseAcceptance), the Pr(FalseRejection), and the Pr(CorrectRejection). The

equal error rate occurs at approximately o = 0.12, where Pr(FalseAcceptance) = 0.16 and

Pr(FalseRejection) = 0.15 (actual values). The Pr(CorrectRejection) indicates the rate at

which the Smirnov Test correctly rejects mis-classifications into the "Others" class.

Table 9 shows the confusion matrix, obtained at a = 0.12. The correct rejections at this value

of ae occurred at a rate of Pr(CorrectRejection) = 0.12, and the final classification error rate is

Pr(Error) = 0.32.
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Open Set Classification Error (10 Train, 15 Test Speakers, 73 utterances)
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Figure 11. Results of Open-Set Speaker Recognition using the GREENFLAG corpus. For minimal
classification error, a = 0.09 is optimal. For an equal error rate, an optimal value is
a , 0.12.
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Table 9. Open-Set Speaker Recognition Results for GREENFLAG, using LPREFC and eight code-
words per speaker. This confusion matrix is for a = 0.12, which is approximately
where the equal error rate occurs, resulting in Pr(CorrectRejection) = 0.12 and
Pr(Error) = 0.32. The dotted line indicates the division between reference speakers
and out-of-set speakers.

ACTUAL COMPUTED
SPEAKER SPEAKER

- 0 1 2 3 4 5 6 7 8 9 Others
0 1 . . . . . . . . . 3

1 4 ........ 2
2 .4
3 . 6
4 ... 5 ... .. 1
5 ........ 4 1
6 .................. 4 2
7 ..... 3 1
8 ..... 7 1
9 .1 3

9..........................3.....

10 1......... 3
11 ....... 1 2
12 1 ...... 1 1
13 1.2 ... .... 1 2
14 1 1 . ... . 1 1
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4.4.3 Observations.

" Based on the objective error rate of 40%, this system attained reasonable results, with classifica-

tion error rates as low as 23% for TIMIT and 26% for GREENFLAG.

" This application of the Smimov Test (via Equations 7 and 8) allows the freedom to use any range

of the significance level, a. That is, hypothesis testing is not restricted to tabulated values of a.

" As shown in Figures 9, 10, and 11, the value of a at which the minimal classification error

occurs, does not necessarily correspond to the value of a at which the equal error rate occurs.

Thus, depending on what is more important (e.g. accuracy), or costly (e.g. falsely accepting or

falsely rejecting a classification), one must chose the value of a appropriately.

* By correctly rejecting utterances into the "Others" class, this system possesses the potential to

enhance the closed-set classification rate by correcting mis-classifications, albeit at a possibly

high cost of false rejections. More importantly, however, the capability of correctly rejecting

mis-classifications is vital in accomplishing the open-set task, for which it performs admirably.

4.5 Conclusion

This chapter showed that the best features, based on an averaged classification error rate, are

LPCEPSTRAE for TIMIT utterances and LPREFC.E for GREENFLAG utterances. Feature analysis

further revealed that LPCEPSTRA, with or without the normalized log energy or pitch appended, are a

robust feature set. Codebook analysis showed that relatively small codebook sizes (with approximately

8-10 codewords) are optimal. Predominantly, however, this chapter showed that the proposed open-set

speaker recognition system (a fuzzy, by-frame majority voting classifier followed by the Smirnov Test)

is an effective method for accomplishing text-independent, open-set speaker recognition.
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V Conclusion

5.1 Introduction

The primary objective of this research was to examine the complex task of open-set speaker

recognition and develop a method to accomplish this task. The second objective was to determine the

best set of features to use for speaker recognition.

5.2 Summary of Results

Both stated objectives were met. The proposed text-independent, open-set speaker recognition

system functioned within the objectives and scope outlined in Sections 1.4 and 1.5, attaining reasonable

open-set classification error rates as low as 23% for TIMIT and 26% for GREENFLAG. The analysis

of features showed that for clean speech from the TIMIT corpus, liftered linear prediction cepstral

coefficients with normalized log energy appended (LPCEPSTRAE) are optimal features (in terms

of minimum averaged classification error rate), while for the tactical GREENFLAG corpus, linear

prediction reflection coefficients with normalized log energy appended (LPREFCE) are optimal. This

analysis also revealed that the liftered linear prediction cepstral coefficients, with or without normalized

log energy or pitch appended, are robust features which should be considered when the speech source

(e.g. channel characteristics) is unknown.

5.3 Contributions

* This thesis introduced a fuzzy classifier followed by the Smirnov Test for Common Distributions

as a new model for text-independent, open-set speaker recognition. This system has several

attributes that make it well suited for open-set speaker recognition: First, the system is robust

in that it achieved similar success in both clean and noise corrupted environments (TIMIT

and GREENFLAG, respectively). Second, the fuzzy classifier's membership function values

are easily derived from commonly used distortion measures, they are limited to the range of

values 0 < U < 1, and their value, which indicates the degree of class membership, offers

a degree of confidence in decision making. Third, the Smirnov Test, being a non-parametric

test, is well suited for this application since it did not require an assumption that the populations
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(the reference and test membership function values) have a particular distribution, nor was this

application constrained to tabulated values of the significance level.

" The best features, in terms of minimal speaker identification error rate, from a group of 17 feature

sets were identified. All too often, speaker recognition research has relied on feature analyses

done for speech recognition. While speech and speaker recognition are similar in many ways,

their goals are quite different (one must determine what was said, while the other must determine

who said it). To blindly assume that features that work well for one will also work well for the

other is an unwise oversimplification. This research focused on finding those features that are

well suited specifically for speaker recognition.

" Codebook analysis showed that relatively small codebooks (with approximately 8-10 codewords)

are adequate, if not optimal. Much of the past work using vector quantization arbitrarily chose

codebook sizes ranging anywhere from 32-512 codewords. As illustrated in Table 1, page 11,

using a codebook size of 8, rather than say 64, saves orders of magnitude of floating point

operations in both building the codebooks and in utterance classification. These results advocate

the use of small codebooks and should provide insight into a better choice of codebook size that

will save enormous costs in computation time.

" As a tool for follow-on research, this thesis intentionally provides a significant amount of

background information in the area of speaker recognition. Appendix A was specifically written

to assist a novice to the field in leaming many of the signal processing and speaker recognition

fundamentals. The software developed in this effort maximized the use of currently available

UNIX based packages (e.g. Matlab, LNKnet, and ESPS) for ease in application or replication

of this work for further research.

5.4 Follow-on Research

The research discussed in this thesis is by no means exhaustive. As with any large undertaking,

there are many areas left for further research. Future work could include enhancements to the proposed

open-set speaker recognition system. Some possible enhancements are listed below:
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" Adaptability to new speakers may be a design criteria. When the system's classification response

is to reject the classification, the system may need to add that unknown speaker to the reference

set. Methods which do not require full retraining will have an advantage in this area.

" The final classification error rate may need to be much lower. Other distance metrics (such

as weighted Euclidean or Mahalanobis) or non-vector quantization-based classifiers (such as

HMMs, GMMs, or neural networks) may provide better accuracy. Alternatively, feature fusion,

classifier fusion, and/or decision fusion techniques may be the answer.

5.5 Conclusion

Closed-set speaker recognition systems abound; however, their application to real-world prob-

lems are fundamentally limited since it is unrealistic to train a system on all possible speakers. A

realistically viable system must be capable of dealing with the open-set task.

Not only does this thesis perform one of the most comprehensive, to date, feature comparisons

specifically in the interest of identifying features well suited for speaker recognition, but it also

justifiably advocates the use of relatively small codebooks for vector quantization-based classification.

Predominantly, however, this thesis introduces a novel approach to accomplishing text-independent,

open-set speaker recognition. By acknowledging that training was limited to one short utterance per

speaker, while capitalizing on the use of small speaker populations, the system achieved success with

utterances from a tactical communications source. This system is, therefore, directly applicable to

tactical surveillance applications.
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Appendix A. Introduction to Speaker Recognition

A.1 Introduction

In speaker recognition there are two main areas of interest: speaker verification and speaker

identification. In speaker verification, the computer must verify the identity of an individual by

determining whether the test pattern matches a stored reference pattern. An example of speaker

verification would be a security system that must determine whether the speaker is who he or she

claims to be. The Cable News Network reported (7 May 95: Science and Technology Week) that Texas

Instruments has integrated speaker verification into a cellular phone system to prevent criminals from

gaining access to and charging calls to unknowing cellular phone customers.

In speaker identification, the computer must determine whether the test pattern matches any

of the stored reference speakers' patterns. Thus, while speaker verification is essentially a binary

decision process (i.e. "Is the speaker who he or she claims to be?" YES/NO), speaker identification is

a multi-class decision process in which the probability of mis-identification increases with the size of

the speaker population. Automated speaker identification is finding application in labeling recorded

dictation (e.g. in court room proceedings). Also, automated speaker identification may eventually

prove to be a valuable tool for law enforcement agencies [3] who may, for example, wish to identify

individuals discussing criminal activities on the telephone.

When the speaker recognition system is both trained and tested using the same text or phrase (or

a subset thereof), the system is text-dependent. Again, the example of the security system applies since

the individual wishing to gain access is usually required to recite a specific phrase. Text-independent

systems, on the other hand, are not constrained by the text spoken in either training or testing. In this

case, the system lacks the means of capitalizing on the contextual features of what was spoken.

Another means to categorize the speaker recognition system has to do with whether the population

size is constrained. Closed-set speaker identification describes a system in which the population is

constrained to only the N speakers on which the system was trained. Hence, the system will classify

the test speaker as one of those N speakers. In an open-set speaker identification system, the speaker

under test may not match (i.e. be close enough to) any of the speakers on which it was trained. Thus,

new speakers should produce a "no match" response from the system. If the system is adaptive, the

new speaker may be added to the database and N is incremented by one; otherwise, the new speaker
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is simply rejected into an "Others" class. Determination of whether the match is close enough depends

on a design threshold within the system.

In a real-world environment, the signal is corrupted by noise; hence, it is necessary to design a

system which will operate in the presence of noise. Noise has many sources and is referred to here as

anything which degrades or interferes with the signal. The telephone system, for example, degrades

the signal not only by adding noise, but also by band-limiting the signal.

The remainder of this appendix focuses on a review of literature in the subjects of speech analysis,

signal processing, and pattern recognition and will detail those techniques which apply to automatic

speaker recognition. Two introductory articles to the topic of speaker recognition by Gish and Schmidt

[22] and O'Shaughnessy [43] are highly recommended. Gish and Schmidt focus on text-independent,

closed-set speaker identification, using maximum a posteriori probability techniques. The authors

introduce some of the fundamentals of speaker identification, particularly feature selection with a

description of the mel-warped cepstra method for parameterizing the short-term spectrum. The authors

also discuss various "robust" systems which operate well in the presence of noise. O'Shaughnessy deals

with the broader topic of automated speaker recognition, providing a description of each of the pattern

recognition steps (normalization, parameterization, feature extraction, comparison, and decision) as

they apply to speaker recognition. Dynamic time warping and vector quantization are two alternative

methods discussed for segmenting speech signals. Various methods for extracting what he states are

the best features (pitch, timing cues, and the first three formants) are also discussed. Drawing on the

techniques described in the article, the author concludes by describing a possible system design. This

appendix concludes with two examples of speaker recognition which apply many of the techniques

discussed below.

A.2 Pre-Processing

Pre-processing entails those measures taken to prepare the speech signal for analysis. For system

development and speech analysis research, the speech signal is typically in the form of digitized data

in a database. One such database (or corpus) is TIMIT [1]. Pre-processing typically consists of pre-

emphasizing the speech signal, then windowing the signal to obtain frames of speech. As a precursor to

the discussion of these topics, Figure 12 shows an example of a speech signal from the TIMIT corpus,

a Hamming window, and a resultant frame of the pre-processed signal.

46



Speech Signal (sampled at fs = 8000 Hz)
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Figure 12. Pre-Processing a Speech Signal. These plots show (top) a TIMIT speech signal sampled
at 8000 Hz, (middle) a Hamming window, and (bottom) a resultant speech frame after the
speech signal is pre-emphasized (using Equation 10) and windowed (using a 256 point
Hamming window).
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A.2.1 Pre-emphasis. Given a sampled, digitized corpus, the first step in pre-processing is

typically pre-emphasis. Pre-emphasis consists of applying a filter to the speech signal that increases

the relative energy of the high frequency spectrum, thereby enhancing the high frequency components

and reducing the effects of the low frequency components [13] [46]. The filter shown in Equation 10

creates a zero at w = 0:

P(z)= 1 - az- , for 0.9 < a < 1.0, (10)

where the value of the pre-emphasis factor is typically a = 0.97 [33].

Two reasons for using a pre-emphasis filter are:

1. Pre-emphasis enhances the higher frequency formants in the vocal tract, while reducing the

lip and glottal effects. Introducing the zero near z = 1 (in addition to the zero near z = 1

contributed by the lip radiation characteristic), reduces the spectral effects of the two glottal

poles near z = 1 [13] [65].

2. By reducing the dynamic range of the signal spectrum, pre-emphasis can prevent numerical

instability caused by an ill-conditioned autocorrelation matrix when using linear prediction

analysis (discussed in Section A.3.1) [36].

A.2.2 Windowing. Since all analysis must be done in finite time [13], after pre-emphasis, a

window function is applied to the speech signal to form a "frame." The resulting short speech frames

are typically chosen to be 10-40 ms in length [5]. The two main reasons for windowing the speech

signal are:

1. Speech is inherently a non-stationary process [36] [45], but it is assumed to be a short-time

stationary process up to 50-70 ms [5] [36]. Thus, the speech frames produced by applying the

the window are assumed to be stationary. Some researchers, Morgan [39] for example, disagree

with this simplification, but it is still widely used.

2. The discrete Fourier transform (DFT), which is widely used in speech analysis, requires a finite

number of input samples [30] [42].

There are many window functions from which to chose (e.g. rectangular, Hamming, and Han-

ning). The window should exhibit a narrow bandwidth mainlobe to resolve the sharp details of the
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magnitude spectrum and a large attenuation of the sidelobes to prevent noise from other parts of the

spectrum from corrupting the true spectrum at a given frequency [13]. A design tradeoff occurs since a

longer window tends to produce a better spectral picture of the signal within a stationary region, while a

shorter window resolves signal events better in time [ 13]. The Hamming window of Figure 12, whose

spectral sidelobes are attenuated by 30 dB, provides a suitable tradeoff and is commonly used [46].

Overlapping frames of speech are used to overcome the shortfalls from window edges. (No

window is perfect, and some windowed data values are set to nearly zero.) Overlapping the frames is

also necessary because finite length transforms are being used to process a long (relative to the short

frames) signal. Typically, the frames overlap by 1 to of the frame length [5] [33].

A.3 Feature Extraction

Feature extraction, in terms of speaker recognition, is the process of creating a compact set of

parameters characteristic of a speaker. The goal is to preserve information relevant to the speaker's

identity, while producing minimal intra-speaker variance and maximal inter-speaker variance. Parsons

states, "The ability of a feature to separate two classes depends on the distance [in the feature space]

between two classes and the scatter within classes [[46]:page 176]." Further, it is often said that good

features make for a good classifier. The optimal features for pattern classification (but not necessarily

for pattern reconstruction) are the a posteriori conditional probability distribution functions [59]. A

significant discovery (although not exploited in this research) was that when the multi-layer perceptron

is trained using backpropagation for the multi-class problem, the outputs approximate the a posteriori

conditional probability distribution functions [58].

A.3.1 Linear Prediction Analysis. The objective of linear prediction (LP) analysis is to

estimate the output sequence (or the forthcoming output sample) from a linear combination of input

samples, past output samples, or both [46]. Ignoring nasals and some fricatives, an all-pole filter, excited

by either a sequence of quasi-periodic pulses or a white noise source, can accurately model the vocal

tract [6]. Linear prediction is a procedure for encoding the speech signal by representing it in terms of

time-varying parameters related to the transfer function of the vocal tract and the characteristics of the

excitation [6] [36]. The application of LP analysis derives a set of predictor coefficients, obtained by

minimizing the total squared error, E, between the actual signal value and its predicted value [36]. The
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predictor coefficients or reflection coefficients (which are derived intermediately) are representative of

the vocal tract (or the data), and they form the feature vectors that are passed to a classifier.

The number of coefficients (or model order, p) required to adequately represent any speech

segment can be determined by the number of resonances and anti-resonances of the vocal tract in the

frequency range of interest, the glottal volume flow function, and the lip radiation [6]. Atal and Hanauer

[6] determined that a value of p = 12 is adequate at a sampling frequency of 10 kHz. Specifically,

they determined that for f 8 = 10 kHz, p = 12 is adequate for voiced speech and p = 6 is adequate

for unvoiced speech. Parsons [46] provides a rule-of-thumb which depends on the sampling frequency,

fs, for determining the model order:
Is

P + (11)1000

where y is a "fudge constant," empirically determined, and typically -y = 2 or 3.

Unfortunately, the assumption of the all-pole model is violated when noise corrupts the speech

signal (e.g. signal-to-noise ratios below 5-10 dB), resulting in a serious degradation of the model [46].

A.3.1.1 LP Analysis Methods. The two primary methods for LP analysis, the auto-

correlation method and the covariance method, are described below [36]:

" Autocorrelation Method. The autocorrelation method assumes that the total squared error, E, is

minimized over an infinite duration. This method applies for stationary signals, and it guarantees

a stable filter (excluding possible instability due to round-off errors). Problems of parameter

accuracy can arise due to the windowing of the signal. For example, Davis and Mermelstein

[12] found that for a signal sampled at 10 kHz, better word recognition results were achieved

with a 256 point Hamming window than with a window size of 128 points.

" Covariance Method. The covariance method, on the other hand, assumes that the total squared

error, E, is minimized over a finite interval. This method is more general in application and can

be used without restrictions, but it does not guarantee a stable filter.

A.3.1.2 Durbin's Recursion Procedure. Durbin's recursion procedure is used with the

autocorrelation method for iteratively determining the predictor coefficients, the reflector coefficients,

and the predictor error. The primary advantage to Durbin's procedure is that it significantly reduces
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the computational complexity, compared to the straight autocorrelation method (from 3 + O(p 2)

operations for the autocorrelation method to p2 + O(p) operations for Durbin's method) [36].

A.3.2 Cepstral Analysis. In recent years, the cepstrum has found widespread use, due to

demonstrated performance, in both speaker and speech recognition. Deller etaldescribe the cepstrum as

"... the premier feature [as opposed to the LP parameters] in the important 'Hidden Markov Modeling'

strategy ... [[13]:page 380]." The cepstrum of a signal is the Fourier transform of the logarithm of its

magnitude spectrum, which in equation form is expressed as [22] [46]:

cepstrum = FFT(logISpectrum1) (12)

The cepstra can be calculated either directly from the Fourier transform or from the linear prediction

coefficients (the faster of the two). The uniqueness of the cepstrum is that it provides a means to

separate the speech signal's two components: the slowly varying spectral envelope and the rapidly

varying pitch harmonic peaks [13] [46]. In fact, Parsons states, "When used with noiseless speech, the

cepstrum is unparalleled as a pitch extractor... [[46]:204]."

For illustrative purposes, Figure 13 shows the development of the cepstrum, described in Equa-

tion 12, for a synthetically generated 100 Hz pulse train signal. Using 256 samples, the signal is

windowed with a 256 point Hamming window to create the frame. Next the signal's spectrum (i.e. the

logarithm of the magnitude of the FFT of the frame) is shown. Notice the peak at 100 Hz, which cor-

responds to the fundamental frequency (or pitch) of the signal. The final plot shows the real cepstrum

of the signal. The low-quefrency portion (quefrency less than approximately 0.005 seconds) corre-

sponds to the signal's spectral envelope, while the peaks at 0.01, 0.02, and 0.03 seconds correspond

to the pitch and its second and third rahmonic. Thus, for a speech signal, the low-quefrency cepstrum

corresponds to the vocal system impulse response, while the high-quefrency cepstrum corresponds to

the excitation [13].

A.3.2.1 The Mel-Warped Cepstrum. Linear prediction cepstrum coefficients (LPCC),

generated from the LP spectrum and distributed along a linear frequency axis, form a less than optimal

representation of an auditory signal since a logarithmic function of frequency better approximates the

ability of the human ear to discriminate frequencies [33]. The mel or Bark scale is often used to
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256 Samples of a 100 Hz Signal (fs = 2000 Hz)

0
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Figure 13. The development of the cepstrum from a synthetically generated 100 Hz pulse train using
Equation 12. The low-quefrency portion (quefrency less than approximately 0.005 sec-
onds) corresponds to the signal's spectral envelope, while the peaks at 0.01, 0.02, and 0.03
seconds correspond to the pitch and its second and third rahmonic. Notice the cepstrum's
efficacy in identifying the pitch.
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approximate the resolution of the human auditory system's perception of speech [13] [46]. Deller et al

define the mel as "a unit measure of perceived pitch or frequency of a tone [[13]:380]." An equation

for approximating the mel-scale, attributed to Fant (1959), is

1000 (1 FHz(
Fm -log2 1000) ' (13)

where Fn,1 is the perceived frequency in mels and FHz is the actual frequency in Hz [13] [46].

The mel-frequency cepstral coefficients (MFCC) are obtained by mel-warping the spectrum's

frequency scale before taking the the last Fourier (or inverse Fourier) transform shown in Equation 12.

Since the real cepstrum works directly with the log magnitude spectrum (see Figure 13) of the speech

signal, it is well suited for such a computation [13]. Davis and Mermelstein [12] generated MFCCs

by applying a simulated mel-scaled triangular filter bank, similar to that shown in Figure 14. The

width and spacing of the filters shown in Figure 14 are constant up to 1000 Hz and logarithmic beyond

1000 Hz. The Entropics Signal Processing System (ESPS) Hidden Markov Model Toolkit (HTK) [70],

uses the following equation for the mel-scale for mel filter bank analysis:

Fmne = 2595 loglo 1 + 70. (14)

HTK then uses a discrete cosine transform (identical to that used by Davis and Mermelstein [12])

applied to the log filter bank outputs, mj, to calculate the MFCCs:

=C Emjcos (j -0.5)) (15)
j=1

for 1 < i < N, where p is the analysis order and N is the required number of cepstral coefficients.

Lee [33], while crediting Shikano and Oppenheim, describes the bilinear transform (BLT) as

a method to transform the linearly scaled LP coefficients to a mel-scale. Lee represents the bilinear

transform as
_ (z-1  a)

Zn-w (1 -az-1)' for(-1<a<1) (16)

Wew = + 2 tan' a sinw ) (17)
53 1 - a cosw
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Mel-Scaled Filter Bank, 13 Linear Filters (<1000 Hz), and 20 Log Filters
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Figure 14. Mel-Scaled Triangular Filter Bank. A triangular filter bank can be used in generating
mel-frequency cepstral coefficients. The filters are linearly spaced up to 1 kHz and
logarithmically spaced after 1 kHz to produce the mel-frequency relationship.

where w is the sampling frequency, Wnew is the converted frequency, and a is the frequency warping

parameter. Positive values of a convert the frequency axis into a low-frequency weighted one, and for

0.4 < a < 0.8, the frequency warping is comparable to that of the mel or Bark scales, obtained from

Equation 13 [33]. In his work, Lee chose a value of a = 0.06, which, as shown in Figure 15, best

approximates the mel-scale up to 1000 Hz.

A.3.3 Choosing the Best Features. With regard to classification, the best features are those

which produce the best classification results. Also, it is often desirable to limit the number of features,

thereby preventing what Duda and Hart [17] refer to as "The Curse of Dimensionality." Two reasons

for limiting the number of features are [58]:

1. To reduce the time to classify an input vector.

2. A large number of free parameters in the classifier may cause the classifier to "memorize" the

training data, resulting in degraded performance with previously unseen test data.
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BLT Warping Parameter (Mel-Frequency Relationship)
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Figure 15. The mel-frequency relationship, using the bilinear transform (BLT) for 0.4 < a < 0.8
to "mel-warp" the frequency scale. The solid line represents the mel-scale given by
Equation 13.

The performance of a feature depends on how well it separates the classes from one another. As applied

to speaker recognition, the best features show little variance for utterances from a single speaker and

large variance for utterances from different speakers. Wolf [69] outlined a set of desirable feature

attributes; while it is unlikely that any feature set will exhibit all of these qualities, the features should:

" occur naturally and frequently in speech,

" be easy to obtain,

" not change over time or be affected by the speaker's health,

" not be affected by reasonable background noise or depend on specific transmission characteristics,

" and not be susceptible to mimicry.

A.3.3.1 Discriminant Analysis. A method to determine the best features amongst all

the classes of data is the Fisher's Generalized Discriminant Function (the F-ratio) [17] [46]. Parsons
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describes a way to characterize this numerically as taking the ratio of the difference of the means (t)

to the standard deviation (o-) of the measurements, defining Fisher's Discriminant as [46]:

f -- - Y12)2 (18)

for two classes. For more than two classes, the Generalized Fisher Discriminant function can be

described as the ratio of the between class scatter to the within class scatter. In equation form, for n

data samples and c different classes, Parsons gives

1/(c- 1) EC=I(-I -[t)2 (19)

1/c(n - 1) E _-i Z,= 1(x -

where xij = the ith sample for class j, tij is the mean of all measurements for class j, and is the mean

of all measurements over all classes. The F-ratio (Equation 19) reduces to the f-ratio (Equation 18)

for the two class case. Features can be rank ordered according to their F-ratio, with high F-ratios

corresponding to the better features.

A.3.3.2 The Karhunen-Lodve Transform. To achieve a better separation of classes

in the feature space and reduce the number of free parameters in the classifier, it is often desirable

to remove the correlation between features. The classifier can then operate on a variance vector (or

diagonalized covariance), rather than an entire covariance matrix. The Karhunen-Lo~ve transform

(KLT) is one method of diagonalizing a covariance matrix [46]. Given a covariance matrix W, the

KLT, described by Parsons [46], rotates the feature vector by the matrix A. That is,

y=ATx (20)

where x is the original set of features and y is the transformed set. The goal is to find the matrix A such

that

Cy = E{yyT} = E{ATxxTA} = ATE{xxT}A = ATWA (21)

giving

ATWA = diag(Al, A2 ,..., A,) (22)
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then A accomplishes the rotation, and the Ai are the eigenvalues of the covariance matrix, W. The

elements of y are uncorrelated, and the A elements give the variances of the yi (i.e. Ai = a2).

Based on the variance of the original data, the KLT can be used to reduce the number of features

by eliminating those features with low variance. The transformed features are rank ordered according

to their variances (by examining the Ai), keeping those with the largest variance.

A.3.3.3 F-ratio and KLTDrawbacks. It is worth noting some of the drawbacks of the

F-ratio and the KLT [32] [46]:

" Both assume the data (features) are Gaussian distributed.

" Since features are thrown away, some information is inevitably lost. Ideally, this lost information

is minimal, with the high ranking features retaining the majority of the information.

" Discriminant analysis is not reliable if the mean vectors are near one another.

" The F-ratio evaluates single features, but not necessarily combinations of features. That is, it is

possible that two high F-ratio features in combination perform poorer than expected since their

information may be redundant. An effective, but very computationally expensive technique, for

finding the best combination of features is the Add-On procedure. Starting with just one feature,

all subsets of features are successively applied to the classifier, the subset which performs the

best is kept.

" The KLT is computationally expensive.

" The KLT is optimal for signal representation (making it optimal for signal reconstruction), but

not necessarily optimal with regard to class separability.

A.3.3.4 Foley's Rule. Part of finding the best features includes determining how many

features should be used to classify the data. Foley's rule-of-thumb [19] provides guidance in this area

by stating that if the ratio of the number of samples per class, N, to the number of features, L, is greater

than three, then the design set error rate is approximately the test set error rate, and the test set error

rate is close to the optimum error rate attained by a Bayes classifier. In equation form, Foley's rule is

NN > 3 ==* Optimal Error Rate. (23)
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Since Foley's rule assumes that the data are Gaussian distributed, if less is known about the underlying

probability structure, an even greater ratio of - should be used [19].

A.4 Classification

The goal in speaker recognition is for the system to make an accurate, reliable decision of an

unknown speaker's identity. Classification, the final stage in a closed-set pattern recognition system,

is the decision-based process in which the system chooses the most probable or closest matching

class to accomplish this goal. In general, classification of a test pattern is based on a minimum

distortion measure. The distortion measure is commonly the distance measured between two templates

or models, such as the Euclidean distance (which is adequate for cepstral coefficients [49]). There

are many classification techniques available. Neural networks, one of the more common pattern

recognition techniques, are not specifically discussed here; however, suffice it to say that they too have

been used in speaker recognition [64]. Three common methods are discussed below.

A.4.1 Vector Quantization. Vector Quantization (VQ) is a form of unsupervised learning.

Ideally, the feature space consists of small clusters each formed by repetitions of a speaker's utterances,

with the different speakers' clusters widely separated. Vector quantization (VQ) (or clustering) allows

for a cluster of data to be represented by a single vector and is therefore a useful means of reducing the

amount of data. By vector quantizing the training data (referred to as creating a codebook) the pattern

classifier needs only to compare the test sample to the representative cluster centers (a.k.a. codewords),

rather than the entire training set of data for classification. Thus, classification entails finding the

minimum distortion between an unknown test speaker's utterance and the set of reference speakers'

codebooks. In their classic article on VQ, Linde, Buzo, and Gray [35] describe the algorithms for vector

quantizing data which is distributed in either a known or unknown distribution. The Generalized Lloyd

Algorithm is commonly referred to as the LBG Algorithm, which is similar to a k-means algorithm,

except that the distortion measure is general (e.g. for LP coefficients, the Itakura-Saito distortion

measure may be optimal).

The cluster centers are formed by iteratively computing the nearest neighbor distance (from the

data to the cluster center). This iterative method terminates in a local minimum when the average

distortion (based on the distance from the cluster centers to the data points within the clusters) stops
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LBG with Splitting (2 Codewords at Termination, m=4) LBG with Splitting (4 Codewords at Termination, m=4)
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Figure 16. An example of the LBG Algorithm (initialized with splitting) for clustering synthetically
generated, unlabeled data, illustrating (a) two codewords (cluster centers), and (b) four
codewords. The dotted lines connecting the data points to the codewords form the
represented clusters, and m represents the number of iterations.

changing significantly. Linde et al [35] discuss a splitting method to initialize the codebook, whereby

the LBG Algorithm is applied at each power of two (giving codebook sizes of 1, 2, 4, 8, 16... ).

Figure 16 is a two-dimensional example of the clustering capability of of the LBG Algorithm using

Linde et al's splitting technique on synthetically generated, unlabeled data. Figure 16(a) shows the

codeword locations and the clusters formed (dotted lines) of unlabeled data for two cluster centers. In

Figure 16(b), the two cluster centers were split into four clusters centers, resulting in a re-clustering

of the data for the new codeword locations. As one can see, more codewords can achieve a finer

representation of the data; however, in the limit (where the number of codewords equals the number of

data points), nothing is achieved by clustering the data.

A.4.2 Dynamic Time Warping. Dynamic Time Warping (DTW) is a form of temporal signal

classification. Since speech signals are commonly divided into short, overlapping frames, timing can

become important. The segmentation of utterances into meaningful units (e.g., phones) is difficult;

thus, templates are usually compared frame-by-frame, which can lead to alignment problems. Linear

time normalization is insufficient to treat this problem because the effects of speaking rate changes are

nonlinear [43]. A procedure used to address the problem of alignment, called dynamic time warping

(DTW), nonlinearly warps one template in an attempt to align similar acoustic segments in the test and
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Figure 17. Two Hidden Markov Models shown for illustrative purposes. On the left is a fully
connected, ergodic HMM; on the right is a left-to-right HMM.

reference templates [13] [50]. DTW combines alignment and distance computation through a dynamic

programming procedure [13] [43].

A.4.3 Hidden Markov Models. Another form of temporal signal classification is the Hidden

Markov Model (HMM). While DTW creates a template and VQ creates a codebook to represent the

training data, an HMM creates a statistical model of the training data which retains information about

the distribution of the training data [57]. An HMM is said to be "hidden" because one cannot directly

observe which state the model is in - only the features produced by that state. HMMs attempt to

identify the steadily or distinctively behaving periods of a signal, then characterize the sequentially

evolving nature of the periods, and choose the best model for the periods [48]. Rabiner and Juang

define a hidden Markov model as "a doubly stochastic process with an underlying stochastic process

that is not observable (i.e. hidden), but can only be observed through another set of stochastic processes

that produce the sequence of observed symbols [[48]:5]."

Figure 17 shows two types of HMMs. The fully connected HMM, referred to as an ergodic

model, shows three states, the state transition probabilities aij and the probabilities of observing a

feature for a given state bj(Oi). The left-to-right model also shown in Figure 17 is more applicable to

time-varying signals such as speech.

For the HMM to be useful in application, three problems must be solved [47] [49]:
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1. Compute P ( 1A). The first problem, referred to as the evaluation problem, deals with evaluating

or "scoring" the model. In other words, given a model and a sequence of observations, one must

determine the probability that the observed sequence was produced by the model. In solving

this problem, one must choose the model that best matches the observations. In other words, the

probability of the observation sequence 0, given the model A, P(OIA), must be calculated. The

preferred method of calculating P(OA) is the Forward-Backward Procedure since it reduces

the computational complexity (compared to direct computation) by several orders of magnitude.

2. Find the Optimal State Sequence. The second problem deals with determining the most

likely state sequence (the hidden part of the model) which led to the sequence of observations

(i.e. finding the optimal state sequence associated with the given observation sequence). The

preferred solution to this problem is the Viterbi Algorithm since direct computation may result

in a sequence that does not exist.

3. Training. The third problem deals with optimizing the model parameters to best describe the

observed sequence. Here, the model is trained to optimally adapt the model's parameters, based

on training data. Essentially, the model parameters are adjusted to maximize the probability of

the observation sequence, given the model. The solution to this problem is the application of the

Baum-Welch Re-estimation Algorithm.

The disadvantage of HMMs is that they require extensive training to develop accurate models;

however, their recall is fast. Also, the HMM is designed to model the signal, not specifically to

discriminate or classify.

A.5 Speech Corpora and the Channel

In their development, speaker recognition systems are trained and validated using various speech

databases, such as the TIMIT corpus mentioned earlier. TIMIT's qualities are that it consists of

many speakers (630 speakers each stating 10 sentences), its speech utterances are continuous, and

its speakers come from a variety of North American dialects. Its drawback is that it was produced

in a low background noise, or clean environment. In a real-world environment, the signal is often

corrupted in a variety of ways as it propagates through the channel. In this context, the channel may

simply be the telephone system (which not only band-limits the signal, but also adds noise) or a radio
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transmission system (with the effects of the signal propagating through free-space). Rome Laboratory's

GREENFLAG corpus [66] consists of 41 speakers recorded during an Air Force exercise. The 255

utterances are text-independent (however call-signs are frequently used) and some were recorded on

different days. The utterances consist of tactical communications over RF channels, originally sampled

at 48 kHz, and later re-sampled at 8 kHz.

Noise can significantly degrade the performance of an speaker recognition system developed

solely for noise-free environment. Thus, a speaker recognition system's design must be robust; thereby

enabling it to operate in the presence of noise. The GREENFLAG corpus is well suited for testing a

system on utterances degraded by noise. There are a variety of alternative approaches to incorporate

the effects of a channel in designing a speaker recognition system. One approach, while logistically

demanding, is to create the speech database by recording signals which have propagated through the

channel. NYNEX Science and Technology created the NTIMIT corpus [2], for example, by transmitting

all 6300 original TIMIT utterances through various channels in the NYNEX telephone network. A

comparison of the TIMIT and NTIMIT versions of a sentence is shown in Figure 18. Notice that

the NTIMIT sentence's spectrum shows the band-limiting effects of the telephone channel. Similarly,

Lockheed Sanders produced the cellular-TIMIT or CTIMIT corpus [10] which consists of the TIMIT

utterances transmitted over a cellular network. Another approach is to model the channel. Reynolds,

for example, compensated for noise with an integrated speech-background model [52]. In this case,

the effects of a simulated channel are applied to a clean utterance. Watterson et al [67] designed a

stationary HF ionospheric channel model validated for bandwidths ranging from 2.5 kHz (nighttime)

to 12 kHz (daytime). In Watterson's model, the input signal feeds an ideal delay line and is delivered

at several taps with adjustable delays, which represent the ionospheric modal component. To obtain

the output signal, each delayed signal is modulated (in amplitude and phase), then the delayed and

modulated signals are summed.

A.6 Example 1: Closed-Set Speaker Identification

This section provides an example of applying some of the speaker recognition topics discussed

in the previous sections. The software used to obtain these results (and those in the next example)

makes maximal use of readily available UNIX based packages, such as: Matlab and the Entropics
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Speaker: fcfjO
"She had your dark suit in greasy wash water all year."

TIMIT:

i 
+¢~~ ~~~ ..... ..... ..... . .. .. .. .. .

NTIMIT:

.. . . .. .. .~~. .. .. .. . .... . . . . . . . :. . . . .

Figure 18. The TIMIT and NTIMIT versions of the same sentence. Also shown are the spectra,
taken from a short time segment of the word "dark." Note the band-limiting effects of the
telephone channel, shown in the spectrum of the NTIMIT utterance.
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Table 10. Summary of Speaker Identification Results, using mel-warped linear prediction cepstral
coefficients (MLPCC) and mel-warped cepstral coefficients derived from the real FFT
(MFCC) for TIMIT speech.

Dialect Number of MLPCC MFCC
Region Speakers # Test Errors % Accuracy # Test Errors % Accuracy
1. Northeast 10 1 90 2 80
2. Northern 10 2 80 1 90
3. North Midland 10 0 100 1 90
4. South Midland 10 2 80 2 80
5. Southern 10 0 100 1 90
6. New York City 10 0 100 1 90
7. Western 10 0 100 2 80
8. Army Brat 10 0 100 1 90
TOTALS 80 5 94 11 86

Signal Processing System (ESPS) and its Hidden Markov Model Tool Kit (HTK). The intent in this

example is primarily to illustrate the results of text-independent, closed-set speaker identification.

A.6.1 TIMIT. Table 10 shows the results for classifying 80 TIMIT speakers (10 speakers

from the eight dialect regions, one test utterance per speaker). Each speaker's codebook size is 32

codewords, and the features are 101h order mel-warped linear prediction cepstral coefficients (MLPCC)

and mel-warped cepstral coefficients derived from the real FFT (MFCC), obtained by using the first 10

real coefficients from a 1024 point FFT. The mel-warping was done in ESPS with the bilinear transform

(a = 0.5). The classifier was trained on the sal.sd sentence "She had your dark suit in greasy wash

water all year.", and tested on the sa2.sd sentence, "Don't ask me to carry an oily rag like that."

In listening to the speakers who resulted in mis-classification, one can understand why they were

mis-classified. For example, in Dialect Region 1, speaker mdpkO was classified as speaker mdacO. For

the training sentence, mdpkO spoke very clearly, enunciating every phoneme (especially the liquid /r/).

For the test sentence, however, mdpkO's New England accent was evident, and he actually did sound

more like mkacO.

A.6.2 NTIMIT. Similar tests, with similar parameters, were run using the NTIMIT corpus.

It is quite evident from the results shown in Table 11 that noise can have a severe impact on a speaker

identification system. Also, in general, it took more iterations for the VQ codebooks to converge for

the NTIMIT speech.
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Table 11. Summary of Speaker Identification Results, using mel-warped linear prediction cepstral
coefficients (MLPCC) and mel-warped cepstral coefficients derived from the real FFT
(MFCC) for NTIM1T speech.

Dialect Number of MLPCC MFCC
Region Speakers # Test Errors % Accuracy # Test Errors % Accuracy
1. Northeast 10 6 40 7 30
2. Northern 10 6 40 6 40
3. North Midland 10 4 60 5 50
4. South Midland 10 6 40 5 50
5. Southern 10 4 60 7 30
6. New York City 10 6 40 6 40
7. Western 10 5 50 4 60
8. Army Brat 10 2 80 6 40
TOTALS 80 39 51 46 42

A.6.3 Summary of Results. These experiments used an accumulation of small populations

from the TIMIT and NTIMIT corpora (i.e. 10 speakers each from within the same dialect region and

one utterance per speaker). The results shown in Tables 10 and 11 illustrate that noise can have a major

effect on a speaker recognition system.

A.7 Example 2: Open-Set Speaker Recognition

This section provides an example of open-set speaker recognition using the GREENFLAG corpus

and a Gaussian classifier'. For the open-set task, two errors (Pr(FalseAccept) and Pr(FalseReject)),

which contribute to the overall classification error, are noted. The balance between Pr(FalseAccept)

and Pr(FalseReject) is controlled by a threshold value, 0. If the classification is within the threshold, it

is accepted; thus, mis-classified utterances can be falsely accepted. Alternatively, a correct classification

can be falsely rejected. Often, a design criteria is to find a value of 0 where Pr(FalseAccept) equals

Pr(FalseReject), referred to as the equal error rate.

The features used in this example are 121h order liftered linear prediction cepstral coefficients,

appended by normalized log energy, averaged over all frames per utterance. The classifier was trained

on all of the utterances. Figure 19 shows open-set classification results using a Gaussian classifier on

10 randomly chosen speakers from the GREENFLAG corpus. The average results from 1000 iterations

for each threshold value, 0, show that for an equal error rate and highest accuracy, 0 P 28.

'Thanks to Maj Ruck for designing this Gaussian classifier.
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Open Set: Average Pr(Correct Classifications), (1000 iterations)
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Figure 19. Results of Open-Set Speaker Recognition with a Gaussian Classifier using the GREEN-
FLAG corpus. Based on the average probability of correct classifications (top) and
average probabilities of false acceptances and false rejections (middle), an optimal value
of theta would be 0 z 28. Also note this system's ability to adaptively add new speakers
(bottom), which corresponds to the Pr(FalseRejections).
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A.8 Conclusion

This appendix provides an overview of speaker recognition, reviewing some of the more pertinent

subjects and techniques in the areas of speech analysis, signal processing, and pattern recognition which

apply to automatic speaker recognition.
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Appendix B. Detailed Results

B.1 Introduction

This appendix provides a more complete view of the results of this effort. Feature analysis

results are first provided for both the TIMIT and GREENFLAG corpora. Then, the results of testing

the proposed open-set speaker recognition system, a fuzzy classifier followed by hypothesis testing,

are presented for both corpora.

B.2 Feature Analysis

The following plots provide the results, presented in the order that the features were ranked

according to Table 6, for the TIMIT and GREENFLAG corpora.
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Classification Error (10 TIMIT Speakers, 40 Utterances)
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Figure 20. Features Ranked 1, 2, and 3. (a) TIMIT Features: LPCEPSTRA-E, LPCEPSTRAFO,
and LPCEPSTRA. (b) GREENFLAG Features: LPREFCE, LPCEPSTRAE, and LP-
CEPSTRAFO.
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Classification Error (10 TIMIT Speakers, 40 Utterances)
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Figure 21. Features Ranked 4,5, and 6. (a) TIMiT Features: MFCCYFO, LPREFC-E, and MFCC.E.
(b) GREENFLAG Features: LPCEPSTRA, LPREFC, and LPREFCYFO.
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Classification Error (10 TI MIT Speakers, 40 Utterances)
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Figure 22. Features Ranked 7, 8, and 9. (a) TIMIT Features: MFCC, LPREFC-YO, and RASTA. (b)
GREENFLAG Features: MFCC, MFCC..E, and MFCCYFO.
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Classification Error (10 TIMIT Speakers, 40 Utterances)
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Classification Error (10 GREENFLAG Speakers, 53 Utterances)
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Figure 23. Features Ranked 10, 11, and 12. (a) TIMIT Features: LPREFC, LPCEPSTRAD, and

LPREFCA. (b) GREENFLAG Features: RASTA, LPREFCD, and LPREFCA.

72



Classification Error (10 TIMIT Speakers, 40 Utterances)
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Figure 24. Features Ranked 13, 14, and 15. (a) TIMIT Features: LPREFCJ), LPCEPSTRA..A, and
MFCCJ). (b) GREENFLAG Features: MFCCJ), MFCC-A, and LPCEPSTRM-D.
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Classification Error (10 TIMIT Speakers, 40 Utterances)
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Figure 25. Features Ranked 16 and 17. (a) TIMIT Features: MFCC-A and FO. (b) GREENFLAG
Features: LPCEPSTRA-A and FO.
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B.3 Open-Set Speaker Recognition

The following plots provide the results of testing the proposed text-independent, open-set speaker

recognition system for each TIMIT Dialect Region and three arbitrary groups of GREENFLAG speak-

ers.
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Open Set Classification Error (TIMIT, Dialect Region 1)
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Figure 26. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 1, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lolve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smirnov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 2)
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Figure 27. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 2, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lo~ve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smimov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 3)
0.34

0.33

0.32

0.31

0 0.3

0.29

0.. 0.28

0.27

0.26

0.25

0.24 I I I I I
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Pr(False Acceptances), Pr(False Rejections), and Pr(Correct Rejections)
0.4 I I I

0.35 +
+

+

0.3 + +

c- + +

0" 0.25. ...........................
LL:.. '' ' '

LL 0.2 -. ... . . . ."(A

10 0,"53 ..... .Pr(FR)
0.15 "'- .."' (0.02,0.1538)

+ - Pr(CR)

0.1 .

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

alpha (Smirnov Significance Level)

Figure 28. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 3, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lo~ve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smirnov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 4)
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Figure 29. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 4, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lo~ve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smimov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 5)
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Figure 30. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 5, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lo~ve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smimov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 6)

0.4 I I

0.42

0.4

0.38

0

0.34

0.32 -
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Pr(False Acceptances), Pr(False Rejections), and Pr(Correct Rejections)

++
03+ +

+

0.25

0.2 .

0.1 0.2 0.3 004 005 00 0.0 ,0.00.0

i1 0.15

" " .......... .

1"1 . ...... - =Pr(FA)

0.1 . . '

... " . ... =Pr(FR)

0.05 .."+ ,Pr(CR)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

alpha (Smirnov Significance Level)

Figure 31. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 6, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lo~ve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smimov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 7)
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Figure 32. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 7, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lobve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smirnov Test for Common Distributions.
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Open Set Classification Error (TIMIT, Dialect Region 8)
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Figure 33. Open-Set Speaker Recognition Results for TIMIT, Dialect Region 8, training on 10
speakers, testing on 15 (the 10 for training, plus five), giving 65 test utterances. Open-set
speaker recognition was accomplished using the LPCEPSTRAE feature set, Karhunen-
Lo~ve initialization followed by the LBG Algorithm (10 codewords), and the fuzzy
classifier followed by the Smimov Test for Common Distributions.
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Open Set Classification Error (10 Train, 25 Test Speakers, 103 utterances)
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.Figure 34. Open-Set Speaker Recognition Results for GREENFLAG, Group 1, training on 10 speak-
ers, testing on 25 (the 10 for training, plus 15), giving 103 test utterances. Open-set
speaker recognition was accomplished using the LPREFC feature set, Karhunen-Lo~ve
initialization followed by the LBG Algorithm (8 codewords), and the fuzzy classifier
followed by the Smirnov Test for Common Distributions.
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Open Set Classification Error (10 Train, 25 Test Speakers, 109 utterances)
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Figure 35. Open-Set Speaker Recognition Results for GREENFLAG, Group 2, training on 10 speak-
ers, testing on 25 (the 10 for training, plus 15), giving 109 test utterances. Open-set
speaker recognition was accomplished using the LPREFC feature set, Karhunen-Lo~ve
initialization followed by the LBG Algorithm (8 codewords), and the fuzzy classifier
followed by the Smirnov Test for Common Distributions.
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Open Set Classification Error (10 Train, 25 Test Speakers, 98 utterances)
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Figure 36. Open-Set Speaker Recognition Results for GREENFLAG, Group 3, training on 10 speak-
ers, testing on 25 (the 10 for training, plus 15), giving 98 test utterances. Open-set speaker
recognition was accomplished using the LPREFC feature set, Karhunen-Lo~ve initializa-
tion followed by the LBG Algorithm (8 codewords), and the fuzzy classifier followed by
the Smimov Test for Common Distributions.
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Average Open Set Classification Error (GREENFLAG)
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Figure 37. Averaged Open-Set Speaker Recognition Results for GREENFLAG, Groups 1-3 (103,
109, and 98 arbitrary test utterances, respectively). Open-set speaker recognition was
accomplished using the LPREFC feature set, Karhunen-Lo~ve initialization followed by
the LBG Algorithm (8 codewords), and the fuzzy classifier followed by the Smimov Test
for Common Distributions.
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B.4 Closed-Set Speaker Recognition

The following plot provides the results of testing the proposed text-independent, open-set speaker

recognition system, operating in a closed-set mode, for all GREENFLAG speakers.
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Closed-Set Classification Error for GREENFLAG (200 test utterances)
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Figure 38. Closed-Set Speaker Recognition Results for GREENFLAG, using the LPREFC feature
set, Karhunen-Lo~ve initialization followed by the LBG Algorithm (8 codewords), and
the fuzzy classifier followed by the Smimov Test for Common Distributions. These
plots show the results of applying the proposed open-set speaker recognition system in
a closed-set mode for all 41 GREENFLAG speakers. As shown, the proposed open-set
system can be used to correct closed-set classification errors, which could be useful if false
acceptances are intolerable. The trade-off for these correct rejections, however, entails
accepting a large number of false rejections.
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B.5 Conclusion

This appendix provides a complete view of the results of this thesis. First, the results of the

feature analysis are provided. Next, the results of testing the proposed open-set speaker recognition

system on the TIMIT and GREENFLAG corpora are provided.
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Appendix C. Baseline Tests

C.1 Introduction

This appendix provides a comparison of speaker identification methods. The goal here is to

substantiate the choice of the classification method applied in the text-independent, open-set speaker

recognition system. Since there is no baseline system for the open-set task, this comparison is limited

to closed-set speaker identification.

C.2 Systems Considered

Each of the following vector quantization-based systems use codebooks formed with the

Karhunen-Lo~ve initialization [14], followed by the LBG Algorithm [35] as described in Section 3.5.1.

The following methods were considered in this baseline testing:

" Minimum Euclidean Distance (MED). This method serves as the baseline, and is similar to that

described by Shore and Burton [61]. Classification of an utterance entails finding the minimum

average (over all frames, using the minimum codeword distance for each codebook) Euclidean

distance.

" Maximum Summed Membership Function Values (MSU). This method calculates a fuzzy

membership function value for each frame of an utterance (see Equation 3). Classification of

the utterance is based on the maximum summed (over all frames) membership function value.

In such a system, the Smirnov Test can then be applied to all of the winning speaker's frames to

accomplish the open-set task.

" By-Frame Majority Voting (BFU). This method also calculates a fuzzy membership function

value for each frame of an utterance; however, it classifies an utterance based on a by-frame

majority voting scheme, wherein each frame is classified based on the maximum membership

function value. The Smirnov Test can then be applied only to the winning frames to accomplish

the open-set task.
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Table 12. Results of Baseline Testing. This table shows the results of closed-set speaker identification
for each method considered. Ten speakers were used for each test group, and each TIMIT
dialect region was tested on 40 utterances, while 53 utterances were used for GREENFLAG.
The weighted mean and standard deviation were used reflect the different number test
utterances for the dialect regions and GREENFLAG. Based on the weighted mean, the
by-frame majority voting method (BFU) performs best.

Speaker ID Error Rate
Test Group MED MSU BFU
Dialect Region 1. 0.10 0.12 0.05
Dialect Region 2. 0.07 0.10 0.05
Dialect Region 3. 0.05 0.10 0.05
Dialect Region 4. 0.10 0.22 0.03
Dialect Region 5. 0.05 0.15 0.07
Dialect Region 6. 0.10 0.18 0.12
Dialect Region 7. 0.03 0.07 0.05
Dialect Region 8. 0.18 0.30 0.05
GREENFLAG 0.04 0.07 0.13
weighted mean 0.079 0.143 0.069
standard deviation 0.039 0.064 0.039

C.3 Baseline Tests

Baseline tests consisted of testing the three methods in closed-set speaker identification for both

the TIMIT (all eight dialect regions) and the GREENFLAG corpora. Similar to the requirements of

Section 1.5, one 2-4 second utterance was used for training. Based on the findings of the feature

and codebook analyses (Sections 4.2 and 4.3), the LPCEPSTRAE feature set and 10 codewords per

codebook were used for the TIMIT speakers, while the LPREFC feature set and eight codewords were

used for GREENFLAG. Ten speakers were used in each test group, and the number of test utterances

were 40 for each of TIMIT's dialect regions and 53 for GREENFLAG.

Table 12 summarizes the results of the baseline testing. As shown in Table 12, the by-frame

majority voting method (BFU) performs better (in terms of the weighted mean and standard deviation of

the speaker identification error rates) than the other methods considered. Hence, the basic classification

method used for the open-set task will be based on the by-frame majority voting method.
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C.4 Conclusion

This appendix provides a comparison of the classification method used in the proposed text-

independent, open-set system (operating in a closed-set mode) to a minimum averaged Euclidean

distance baseline method. The results justify the use of the by-frame majority voting scheme.
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